26-Apr-85

EXDOS - System Specification Page 1

CONFIDENTIAL - INTERNAL CIRCULATION ONLY

Document .... PER-5

Title
Issue
Date

Note:

PER-5/2

eesssss. EXDOS - System Specification
some e 2
co R . 26th April 1985

This document describes the ROM resident part of EXDOS
which provides disk extensions to the EXDOS operating
system. It does not describe the CP/M and MSX-DOS
emulation facilities or the IS-DOS command
environment, these are covered by a separate document
(PER-16). Related documents are:

PER-1 EXDOS - System Overview

PER-2 EXDOS - DISKIO Specification

PER-3 EXDOS - Unit Handler Specification
PER-4 DISKIO and UNITH Implementation Notes
PER-16 IS-DOS - System Specification

Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 2

CONTENTS

i T Introduction
1 EXDOS ROM Entry Points
Initialisation
1 The Initialisation File - "EXDOS.INI"
2 Re-initialisation
3. The EXDOS Filing System Handler - FISH
1 FISH Function Calls - General
2 EXOS Variables
3 File Control Blocks (FCBs)
3:3:1 FCB Format
3:3:2 Pathname Strings
3.4 \
. \ Details of FISH function calls

. /

3.28 -/
4. Filing System and Disk Allocation
1 Boot Sector
2 File Allocation Table
SE Directory Entry Format
4.3.1 File Attributes Byte
4 Volume ID
5 Dirty Disk Flag (Un-deletion)
5.4 Disk Buffering
Creating Additional Sector Buffers
Additional Permanent Buffers
6. Disk Device

.
N

6 o3 Disk I/O Channels
¥ EXDOS CLI Commands
7.1 Command Parameters
7.2 \
. \ Details of EXDOS CLI Commands
. 4
7.19 /
8. EXDOS Error Handling
8.1 User Error Vector
8.2 Disk Errors and Responses
8.3 Error Codes

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 3

1.

2.

INTRODUCTION

The main code of EXDOS is the FILING SYSTEM HANDLER
(FISH) which provides all the facilities necessary for
communicating with files on disk. User programs (apart
from IS_DOS) do not communicate directly with this, but go
through the EXDOS CLI or the DISK DEVICE which in turn
calls FISH.

Since FISH is the central part of EXDOS through which
all communication goes, this will be described in detail
before covering the higher level functions such as the
EXDOS CLI and the DISK DEVICE.

EXDOS ROM ENTRY POINTS

The EXDOS ROM is formatted as an EXOS extension ROM with
two additional entry points to FISH and to DISKIO. The
DISKIO entry point is provided for user's who wish to use
the disk controller hardware directly without going through
EXDOS. The FISH entry point is provided to enable IS-DOS
to call FISH, and is not intended for user programs. There
is of course the normal EXOS system extension entry point
which provides various facilities including initialisation
and the EXDOS CLI. The format of the start of the EXDOS
ROM is as follows:

00h DB "EXOS_ROM"

08h DW 0

0Ah Jp SYS_EXT

0Dh Jp DISKIO

10h Jp FISH
INITIALISATION

During EXOS's cold start routine it will find the EXDOS
ROM and include it in its list of extension ROMs. The main
stages 1in EXDOS initialisation which then follow are as
below:

1. EXOS calls the EXDOS ROM with action code 7 to ask it
how much RAM it requires. EXDOS will ask for
sufficient RAM in the system segment for all its
internal variables and data areas, including those
needed by UNITH, DISKIO and RAMUNIT. This includes
three default sector buffers (512 bytes each) so the
amount of RAM required here will be about 2.5...3k.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 4

2. Next EXOS <calls the EXDOS ROM with action code 8 to
initialise it. EXDOS uses this to set up its internal
data structures and to initialise 1its variables.
UNITH will be 1linked in as wunits 1l...4 and any
extension unit handlers in other ROMs will be located,
linked in and initialised (see PER-3). At this stage
EXDOS does not access any disks.

3. FinallY EXOS will call each ROM in turn with action
code (cold start) to give it the option of starting
up. When EXDOS gets this action code it looks on each
of its drives in turn for a text file called
"EXDOS.INI", If it 1is found then this is made the
default drive and the commands in it executed. These
commands may include a "LOAD" command to load and
start up an applications program (such as IS-DOS) from
disk. If this is not done then EXDOS returns without
taking control to give another ROM (for example IS-
BASIC) a chance.

2.1 INITIALISATION FILE - "EXDOS.INI"

The file ™"EXDOS.INI"™ 1is a text file containing a
seguence of system extension commands which will be
executed once when EXOS does its "cold start"™ ROM scan.
The commands can be any arbitrary text strings, which will
each in turn be passed around all ROMs, and in particular
will be received by the EXDOS ROM itself. Thus any of the
EXDOS CLI commands described in section 7 may be included
in this file. Also any other extension commands recognised
by other ROMs may be included.

For example, it 1is possible to include a "RAMUNIT"
command to set up a RAM disk, followed by "COPY" commands
to copy files from disk onto it. After executing these
commands, the ROM scan will continue so if the IS-BASIC
cartridge 1is plugged in it will start up. Thus it is
possible to use the "EXDOS.INI" file to set up a certain
disk environment for other applications ROMs.

Another particularly useful command to include in the
"EXDOS.INI" file is "LOAD" to load system extensions or an
~oplications program from disk. Also the "SET" command can
be useful to set up EXOS variables. A particular example
of an applications program which can be loaded is
"ISDOS.COM", which will boot wup the IS-DOS operating
system. This is described in document PER-16.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 5

When EXDOS first finds the "EXDOS.INI"™ file, and before
executing any commands, it opens an editor channel with
associated video and keyboard channels and sets the editor
channel wup as the default. This allows it to echo the
commands to the screen (unless there is a "SET ECHO OFF")
and also ensures that the commands have a default channel
to read and write to. These channels are closed when all
the commands have been executed.

2.2 RE-INITIALISATION

The above procedure 1is only ever executed when a
complete EXOS cold reset occurs which is normally only at
power on. When a warm reset occurs for any reason, EXDOS
will be re-initialised by EXOS. When this occurs it checks
to see if the disk device is still linked in and if not it
re-links it in, also it opens any permanent buffer channels
(see section 5.2) and generally sorts itself out. It will
not re-initialise default settings (such as default drive).

I a load of a new applications program fails then EXOS
will do an extension scan with action code 1, which
otherwise 1is only done.,once at power on. When EXDOS
receives this action code it will realise that it is a re-
initialisation and will not re-read the "EXDOS.INI" file,
but it will automatically re-boot IS-DOS if it was IS-DOS
which tried to load the program.

3. THE EXDOS FILING SYSTEM HANDLER - FISH
. [P - FISH FUNCTION CALLS - GENERAL

FISH is called at an entry point at offset 0010h in the
EXDOS ROM (see section 1.1). It must always be called in
page-3, with the system segment in page-2, the page =zero
segment in page-0 and anything in page-1. The current
stack must be 1in the system segment or the page zero
segment.

All read and write calls are passed the address of a
disk transfer area which can be up to 64k in size. The
segment or segments containing this area area need not be
paged 1in when FISH is called, but the four EXOS variables
FSH PO....FSH P3 must be set up to define which four
segments correspond to the range 0000h....FFFFh for the
disk transfer address. FISH will use these segment numbers
in order to access the disk transfer area. It is only
strictly necessary to have the ones which actually
correspond to the disk transfer area set up, but for safety
it is recommended that they are all set up.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 6

All other data areas which are passed to FISH,
principally File Control Blocks (FCBs) and pathname
strings, must be paged into Z-80 space when FISH is called.
Typically they will have to be in page-1l Dbecause FISH
requires specific segments to be in the other three
segments. These data areas can cross segment boundaries
provided that BOTH segments are paged in correctly.

Register 1IY must be set to point to the EXDOS RAM area
in page-2, the address of which can be obtained by a system
extension command (see section 7.18) and is the same as
that required by DISKIO (see PER-2). This address never
changes after EXDOS has started up so it need only be
obtained once.

Register A is used to pass the function code, other main
registers are used for various parameters the details of
which wvary for different function calls. For many
functions IX is a disk transfer address and DE points to an
FCB (file control block) which must not cross a segment
boundary. HL and BC are also used for some functions.

On return from a FISH function call, the paging and

register 1IY will be preserved. All other main registers
(AF, BC, DE, HL, IX and IY) will be corrupted except where
they return results from a function call. The alternate

register set (AF', BC', DE', HL') will be preserved. All
function calls return an EXOS error code in register A,
which will be zero if the call was succesful. The flags
will be set appropriatly for the value of A.

Below is a complete 1list of FISH function calls
including their function codes. Note that although these
function calls are in some cases similar to IS-DOS function
calls they are not identical and the function codes are not
the same.

Code Function

00h Flush buffers

0lh Open file

02h Close file

03h Search for first

04h Search for next

05h Open searched FCB

06h Delete file

07h Create file

08h Rename file

0%h Move file

0Ah Change file attributes

0Bh Get login vector

0Ch Get allocation information
0Dh Get or set UPB (unit parameter block)
0Eh Get file size

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 7

0Fh Read from file

10h Write to file

11lh Write with zero fill

12h Absolute sector read

13h Absolute sector write
14h Change directory

15h Make directory

16h Remove directory

17h Get current directory
18h Set Error vector

3.2 EXOS VARIABLES

EXDOS implements some additional EXOS variables which

are used by the various parts of the system. These are
listed here. In addition to being accessed as EXOS
variables, they can be accessed at address (IY¥+<name>) as

long as 1IY contains the EXDOS workspace pointer and the
system segment is in page-2.

Number Name Function
?2h ROM_EXDOS Segment number of the EXDOS ROM
??h FSH_PO \
?2?h FSH_P1l \ The four disk transfer area
?2?h FSH P2 / segments for read and write.
2?h FSH _P3 /
?2?h ECHO EXHO flag for batch files
??h VERIFY EXDOS verify flag (ON/OFF)
?2?h DEF_UNIT Default unit (drive) number (1l...26)
?2?h RAM UNIT RAM disk unit number. Zero if none
?2?h STEP_RATE Step rate for UNITH (0...3)
??h DISK_ERR Error code for .ABORT
??h RND O \
??h RND 1 \ 32 bit random number maintained
??h RND_2 / by DISKIO for volume ids.
2?h RND_ 3

3.3 FILE CONTROL BLOCKS (FCBs)

All file access is controlled by FCBs which are similar,
but not identical to extended FCBs in MS-DOS, which are in
turn an extended version of CP/M FCBs. Whenever an FCB is
passed to FISH, it must be paged into Z-80 address space.
This means that IS-DOS has to copy all user FCBs to an
internal buffer before passing them on to FISH, which
enables 1t to also make the translation from CP/M to FISH
format and back again. Details of formats of IS-DOS FCBs
can be found in document PER-16.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85

EXDOS - System Specification Page 8

An unopened FCB only has the drive, filename and

extension

(containing

fields set up, and these may be ambiguous
"?" characters). When an unopened FCB is

passed to FISH, a PATHNAME string is also passed, which
defines what directory or sub-directory to use. See
section 3.3.2 for details of these strings.

When an OPEN or CREATE operation is done on an FCB, the
remaining fields are filled in. The reserved area contains
information which specifies where the file is 1located on

disk and what directory it is in, so the pathname string is
no longer required.

3.3:1 FCB FORMAT

All FCBs (File Control Blocks) passed to FISH are 48
bytes long, although some of the fields at the end will not
be used for unopened FCBs.

00h
0lh...05h
06h

07h

08h...0Fh
10h...12h
13h...14h

$90. . 16H

17h...1AN

1Bh...1lCh

PER-5/2

0FFh (For compatibility with MS-DOS)

000h { a4 - - ¥ s s e )

File attribute. Zero for normal file, can be
used to search for special directory entries
(see section 3.7) and to create hidden
files.

b0 - R~ad only
bl - Hidden file
b2 - System file
b3 - Volume label
b4 - Sub-directory
b5 - Archive

b6,b7 - Zero

Drive number. 00h => default drive
0lh...1Fh => specified drive
20h...FFh not allowed

Filename left justified with trailing blanks,
bit-7 will be ignored.
Filename extension.

Not used (Block number in IS-DOS, extent number
and S1 in CP/M)

Not used (Record size in IS-DOS, S2 and record
count in CP/M)

File size in bytes, lowest byte first.

Date of last modification.
bits 15...9 = year 0...119 (1980...2099)
bits 8...5 month 1...12
bits 4...0 day 1...31

Copyright (C) 1985 Intelligent Software Limited



26-Apr-85

1Dh. ..l1Eh

1Fh...26h
27h

28h...2Bh

2Ch. . . 2Fh

EXDOS - System Specification Page 9

Time of last modification.
bits 15..13 hours 0...23
bits 10...5 minutes 0...59
bits 6...0 seconds 0...29 (2 seconds)

Reserved.
Not used (Current record in IS-DOS and CP/M)

File pointer, 1lowest byte first. Set to zero
on open and adjusted by all reads and

writes. (Random record in IS-DOS and CP/M.

Volume id. This is set up when the file is
opened and checked on every access of the
FCB to ensure that the correct disk is being
used.

3.3:.2 PATHNAME STRINGS

Whenever

an unopened FCB is passed to FISH, a pathname

string is also passed, which must be paged into Z-80 memory
space as well as the FCB. This string can specify which
drive and directory to use for the operation. If it is a
null string then the current directory (root directory by

default)

of the drive specified in the FCB will be used,

with zero being replaced by the current default drive.

If the string is non-null then it contains an optional
drive specifier (for example "A:", "z:", "12:"), followed
by a series of sub-directory names separated by back-
slashes ("\").

If the drive specifier is present then the appropriate
drive number will be put in the FCB, over-riding whatever
was there before. If no drive specifier is given then the
drive number in the FCB will be used, which will normally
be set to zero thus selecting the default drive.

If the

first character after the ":" is a back-slash

then the sub-directory list starts from the root directory,

otherwise

it starts from the current directory of the

drive. Each sub-directory name in turn will be found until
the end of the string, with a .NODIR error being returned
if any one does not exist. The sub-directory names may not
contain ambiguous characters ("?2" or "*"),

PER-5/2

Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 10

Pathnames are used by all FISH calls which take unopened
FCBs as parameters. These are:

Open file

Create file

Delete file

Rename file

Search for first
Change file attributes
Get file size

Move file

3.4 FUNCTION CALL 00h - FLUSH BUFFERS

Parameters: None
Results: A = 0 (status code)

This function flushes all dirty sector buffers to the

disk. Open files are not closed. It takes no parameters
and always returns a zero status code.

3.5 FUNCTION CALL 0Olh - OPEN FILE

Parameters: DE -> Unopened FCB
HL -> Pathname string
Results: A = Status code

DE -> Same FCB with some fields filled

The specified directory is is searched for the file
specified in the FCB and the file is opened, an error
(.NOFIL) 1is returned if it 1is not found. If drive
specified is zero (default drive) then the drive number in
the FCB will be replaced by the actual drive number used
(1...26). The ambiguous character "?" is allowed in the
filename or extension in the FCB, in which case the first
file found will be opened.

The file size, date, time and attribute byte and the
current volume id are copied into the FCB and the file
pointer 1is set to zero. The FCB can be used immediately
for reading or writing.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 11

3.6 FUNCTION CALL 02h - CLOSE FILE

Parameters: DE -> Opened FCB
Results: A = Status code
DE -> Same FCB

Closes the file corresponding to the FCB. It is not
necessary to close files which have only been read and if
they are closed the disk directory is not updated. If any
data has been written to the file then the directory entry
will be updated appropriately with the new date, time, size
and allocation information. Note that an altered file can
only be closed correctly if the filename in the FCB has not
been changed. Also the attribute byte is not altered, this
can only be done with a "change attributes"™ call (see
section 3.14).

3.7 FUNCTION CALL 03h - SEARCH FOR FIRST

Parameters: BC -> Space for new FCB (40 bytes)
DE -> Unopened FCB
HL -> Pathname string
Results: A = Status code
IX -> Same address
DE -> Same FCB

Searches the specified directory for a file which
matches the filename in the FCB. Ambiguous filenames
(containing "?" character) are allowed, in which case the
first file which matches will be found.

When a file is found, a valid unopened FCB for this file
will be setup at the address pointed to by BC. This will
consist of the first 7 bytes from the search FCB followed
by the drive number and then the 32 byte directory entry.
Note that the attributes byte in the FCB (byte 6) will be
the same as the search FCB, NOT the attributes of the
located file. This files attributes can be found from the
directory entry (see section 4.3).

If the search FCB attributes byte is zero then only
normal file entries will be found. Entries for volume
label, sub-directories, hidden files and system files will
not be returned.

If the "volume label”™ bit of the search attributes is
set then only the volume label entry will be returned, and
it will always be 1looked for in the root directory
regardless of the pathname. If the "hidden file", "system
file" or "sub-directory" bits are set then all normal file
entries as well as the specified special entries will be
returned. See section 4.3.1 for details of the bit
assignments and meanings.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 12

The file can be opened by immediately calling the "open

searched FCB" function (see section 3.9). This wuses
information stored in the search FCB to define which
directory the file is in. Alternatively the original

pathname string can be passed to an "open file" function
(see section 3.5) along with the new FCB but this will be
less efficient as the whole sub-directory path will have to
be re-searched rather than just the last directory.

3.8 FUNCTION CALL 04h - SEARCH FOR NEXT

Parameters: BC -> Space for new FCB (40 bytes)
DE -> FCB used for "search for first™"
Results: A = Status code

IX -> same address
DE -> same FCB

After a "search for first" function call (see section
3.7), this function may be called repeatedly to find
subsequent matches of the filename if it was ambiguous.
The address pointed to by BC can be different if desired
but must be paged into Z-80 memory space of course.

The reserved section of the search FCB contains the
information which FISH needs to continue the search, so no
file operations must be performed with this FCB between the
"search for first" and any calls to this function. The
information stored in the new FCB is exactly as for "search
for first".

39 FUNCTION CALL 05h - OPEN SEARCHED FCB

Parameters: DE -> FCB returned by search function
HL -> Search FCB.
Results: A = Status code

DE -> Same FCB opened

This function must only be called to open a file which
has been found by "search for first" or "search for next"
(see section 3.7). It uses information stored in the search
FCB to locate the directory containing the file without
having to rescan down a chain of sub-directories and it
thus more efficient than doing an "open file".

The FCB pointed to by DE should be the one set up by the
search operation and it will be opened just like a normal
open function call. The search FCB must be the FCB which
the search operation used and must not have been altered
since this file was found.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26—-Apr-85 EXDOS - System Specification Page 13

3.10 FUNCTION CALL 06h - DELETE FILE

Parameters: DE -> Unopened FCB
HL -> Pathname string
Results: A = Status code

DE -> Same FCB

All entries in the specified directory which match the
filename in the FCB are deleted. The "hidden file™ and
"system file"™ bits in the attributes byte can be set to
enable these type of files to be deleted, other bits must

be clear. See section 4.5 on support for un-deleting
files. If no files are deleted then a .NOFIL error will be
returned.

3,1k FUNCTION CALL 07h - CREATE FILE

Parameters: DE -> Unopened FCB
HL -> Pathname string
Results: A = Status code

DE -> Same FCB opened

This function 1is very similar to the "open file"
function call (see section 3.5) except that it is used to
create a new file rather than open an existing one.
Ambiguous filename characters ("?") are not allowed. If
the file already exists in the specified directory then it
will be truncated to =zero 1length ready for writing,
otherwise the first free directory entry will be set up for
this file, initially with zero length. If the directory is
full then a .DRFUL error will be given (only the root
directory can ever be full).

The "hidden file" bit may be set in the attribute byte

to exclude the file from normal directory searches. All
other bits in the attributes byte will be ignored.

3.12 FUNCTION CALL 08h - RENAME FILE

Parameters: DE -> Unopened modified FCB
HL -> Pathname string
Results: A = Status code

DE -> Same FCB

The modified FCB has a second filename starting at byte
18h in the FCB. Ambiguous characters ("2?") are allowed in
either filename.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 14

The specified directory will be searched and every
matching occurence of the first filename will be replaced
with the second. If a "?" appears in the second name then
the corresponding character from the original name will be
preserved. Checking 1is done to ensure that no duplicate
filenames are created. If no files are renamed then a
.NOFIL error will be returned.

The attributes byte allows the volume name, sub-
directories, hidden, system and read only files to be
renamed by setting the appropriate bits. If the "volume
name" bit is set then ONLY the volume name will be renamed
and the root directory will be used regardless of the
pathname.

If sub-directories are being renamed then a check will

be made with the current directory path and any directory
which is contained in this path will not be renamed.

3.13 FUNCTION CALL 09h - MOVE FILE

Parameters: DE -> Search FCB
HL -> New pathname string
Results: A = Status code

DE -> Same FCB unmodified

This function must only be called after a file or sub-
directory has been located with a "search for first" or
"search for next" function call (see section 3.7). It is
used to move the file or sub-directory from one directory
to another. The data of the files is not duplicated. It
is not possible to move a sub-directory into one of its own

decentent directories or into itself. Also any directory
which 1is contained in the current directory path cannot be
moved.

The search FCB contains information which defines where
the current directory entry for the file is, and the new
pathname string defines which directory the file is to be

moved to. If the new pathname string contains a drive
specifier then it must be the same drive as the file is
currently on. The whole directory entry corresponding to

the file will be copied into the new directory and deleted
from the old one. The search FCB is not modified at all so
more "search for next" function calls can be made with it.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 15

3.14 FUNCTION CALL OAh - CHANGE FILE ATTRIBUTES

Parameters: DE -> Unopened FCB
HL -> Pathname string
B 0 => read attributes
1 => change attributes
New attribute byte if B=1
Status code
> Same FCB
Attribute byte

C
Results: A
DE
C

I B=0 then the attribute byte of the specified file or
sub-directory will be returned (see section 4.3.1 for
details of the attribute byte). If B=1l then the attributes
will be set to the specified new value and the new value
returned, but only the "system file", "hidden file", "read
only", and "archive" bits <can be changed. Ambiguous
filenames are not allowed.

Note that in order to change the attributes of hidden
files, system files or sub-directories, the appropriate
attribute bits must be set in order to find the file in the
first place.

3.15 FUNCTION CALL OBh - GET LOGIN VECTOR

Parameters: None

Results: A = 0 (status code)
DE = HYah word of login vector
HL = Low word of login vector

The 1login vector 1is a 26 bit number which specifies
which logical drives are available to be used. Unlike CP/M
all drives 1in the system are always "logged in". Bit-0
corresponds to drive "A:" and so on, with the bit being set
to indicate an available drive.

3.16 FUNCTION CALL OCh - GET ALLOCATION INFORMATION

Parameters: 22222227227
Results: 2PPPRPIVIRD

Yet to be defined in detail. Will return at least:

sectors/cluster

sector size (always 512)
number of clusters on disk
number of free clusters

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 16

3.17 FUNCTION CALL ODh - GET OR SET UPB

Parameters: DE -> Pointer to UPB (or 64 byte space
for one).
C = Drive number (0...26)
B - => Get UPB
=> Set UPB
2 => Cancel UPB
Results: A = Status code

DE -> Same address.

If B=0 then the current UPB (unit parameter block) for
the specified drive will be copied into the user's memory
address. The UPB will always be checked with the disk when
this function 1is called to ensure that it is up to date.
The format of UPBs is described in document PER-3.

If B=1 then the user's memory area must contain a UPB
which will then be used for all further accesses to this
drive, rather than determining the UPB from the disk. Any
dirty buffers will be flushed to disk first. This function
is provided to allow some non-standard disk formats to be
used.

A call with B=2 will cancel the effect of the user
specified UPB, allowing the drive to return to normal
automatic disk parameter selection. 1In this case, register
DE need not be set up. When this function is called any
buffers will be flushed and the UPB cancelled. The NEXT
access to this drive will then determine the disk type from
the disk. The disk should therefore not be changed until
after this function is issued to ensure that buffers are
flushed correctly.

3.18 FUNCTION CALL OEh - GET FILE SIZE

Parameters: DE -> Unopened FCB
HL -> Pathname string
Results: A = Status code

DE -> Same FCB with size, date and time

The directory 1is searched for the specified file
(ambiguous characters "?" are not allowed) and the size,
date and time fields from the directory entry are copied
into the FCB.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 17

3.19 FUNCTION CALL OFh - READ FROM FILE

Parameters: IX -> Disk transfer address
DE -> Opened FCB
BC Number of bytes to read
Results: A Status code
IX -> Updated memory address
DE -> Same FCB
BC Number of bytes read

Reads the specified number of bytes from the file to the
disk transfer address. Up to 64k can be read into the
segments defined by FSH P0...FSH P3 with any segment
boundaries being handled automatically, an error will be
returned 1if the read attempts to wrap around past the top
of page-3.

The position in the file is determined by the file
pointer field of the FCB which will be updated
appropriately. If an error code is returned then the
number of bytes succesfully read may be 1less than the
number requested. If the read attempts to read beyond the
end of file then a .EOF error will be returned.

3220 FUNCTION CALL 10h - WRITE TO FILE

Parameters: IX -> Disk transfer address

DE -> Opened FCB

BC = Number of bytes to write
Results: A = Status code

IX -> Updated memory address
DE -> Same FCB
BC = Number of bytes written

Writes the specified number of bytes from the disk
transfer address to the file. Up to 64k may be written
from the segments defined by FSH PO0...FSH P3, with any
segment boundaries being handled automatically. An error
will be returned if it attempts to write over the end of
page-3. If the EXOS variable "VERIFY" is zero then an
automatic verify of the written data will be performed.

The position in the file is determined by the file
pointer field of the FCB which will be updated
appropriately. If an error code is returned then the
number of bytes succesfully written may be less than the
number requested.

If the write goes beyond the end of file then additional
disk space will be allocated as necessary and the file size
adjusted. If it starts beyond the end of file then disk
space to fill the "gap" will be allocated but not
initialised.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 18

If there 1is insufficient space on the disk for the
entire write operation, then a .DSKFL error will be
returned and NO DATA WILL BE WRITTEN even if the start of
the write would overwrite existing data in the file.

3.21 FUNCTION CALL 1lh - WRITE WITH ZERO FILL

Parameters: IX -> Disk transfer address
DE -> Opened FCB
BC Number of bytes to write
Results: A Status code
IX -> Updated memory address
DE -> Same FCB
BC Number of bytes written

This function is identical with "write to file"™ (above)
except that if the write starts beyond the end of the file,
the disk space allocated to £fill the "gap" will be
initialised to zero.

3.22 FUNCTION CALL 12h - ABSOLUTE SECTOR READ

Parameters: IX -> Disk transfer address
DE Logical sector number

H = Number of sectors to read

L = Drive number (0...26)
Results: A = Status code

IX -> Updated transfer address

DE = Next logical sector number

H = Number of sectors read

L = Same drive number

The specified sectors are read from the disk to the disk
transfer address. Up to 64k can be read into the segments
defines by FSH P0...FSH_P3, with segment boundaries being
handled automatically and an error will be returned if the
read attempts to read beyond the end of page-3. If an
error occurs then the number of sectors read may be less
than the number requested. Normal retries are provided in
case of errors.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 19

3.23 FUNCTION CALL 13h - ABSOLUTE SECTOR WRITE

Parameters: IX -> Disk transfer address
DE = Logical sector number
H = Number of sectors to write
L = Drive number (0...26)
Results: A = Status code
IX -> Updated transfer address
DE = Next logical sector number
H = Number of sectors write
L = Same drive number

The specified sectors are written from the disk transfer
address to the disk. Up to 64k can be written from the
segments defined by FSH_PO...FSH_P3, with segment
boundaries being handled automatically and an error will be
returned 1if the write attempts to write beyond the end of

page-3. If an error occurs then the number of sectors
written may be less than the number requested. Normal
retries are provided 1in case of errors. If the EXOS

variable "VERIFY" is zero then an automatic verify of the
sectors will be done.

3.24 FUNCTION CALL 14h - CHANGE DIRECTORY

Parameters: HL -> Pathname string
Results: A = Status code

The pathname specifies a path to a directory which is to
be made the current directory for this drive. If any
directory in the pathname does not exist then a .NODIR
error is returned and the current directory is not changed.

3:25 FUNCTION CALL 15h - MAKE DIRECTORY

Parameters: HL -> Pathname string
Results: A = Status code

The pathname specifies a new sub-directory which is to
be created. The last item in the string is the name of the
new sub-directory to create. If it already exists then a
.DIRX error is returned otherwise the new sub-directory is
created and the two initial entries in it set to "." which
points to the directory itself, and ".." which points to
its parent directory.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 20

3.26 FUNCTION CALL 16h - REMOVE DIRECTORY

Parameters: HL -> Pathname string
Results: A = Status code
The pathname specifies a sub-directory which is to be
removed. If the specified directory is not empty (apart
from the "." and ".." entries) then a .DIRNE error is

returned, otherwise the sub-directory is removed from its
parent directory. The current directory for a drive cannot
be removed and neither can the root directory.

3.27 FUNCTION CALL 17h - GET CURRENT DIRECTORY

Parameters: HL -> Space for string (64 bytes)
B = Drive number (0...26)
Results: A = Status code

HL -> Pathname string at same address

The full pathname (starting from the root directory) of
the current directory for the specified drive 1is copied
into the user's data area. It will not include the drive
indicator or an initial "\". If the root directory is the
current directory then a null string will be returned.

3.28 FUNCTION CALL 18h - SET ERROR VECTOR

Parameters: HL = Address of new vector
B = Segment of new vector

Returns: A = 0 (status code)
HL = Address of old vector
B = Segment of old vector

The error vector allows the user program to intercept
disk errors and thus to override the normal prompts.
Section 8 describes the facility in detail. This function
allows the user to specify the address of a routine which
will be called before EXDOS's error handling. The wuser's
routine will always be entered in page-3.

The address of the previous routine is returned so that
if these results are saved and then passed back to this
function call later, the old routine will be restored. If
the segment number is zero, as it is by default, then the
routine will not be called.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 21

4. FILING SYSTEM and DISK ALLOCATION

The filing system supported by EXDOS is compatible with
all versions of MS-DOS up to version 2.00 (at least), and
with MSX-DOS, provided 512 byte sectors are used. The
various disk formats are handled by the unit handler (see
PER-3 and PER-4), EXDOS simply sees a disk divided up into
512 byte sectors numbered O0...N-1 where "N" is the total
number of sectors on the disk.

Each disk has a boot sector (sector 0), a root directory
and one or more copies (usually 2) of a file allocation
table (FAT). The remainder of the disk is divided up
logically into CLUSTERS numbered 2....M+l where M is the

total number of clusters. A cluster 1is the wunit of
allocation on the disk and the size of a cluster depends on
the disk format, normally it is one or two sectors. The

sectors of a cluster are always sequential.

The root directory contains a fixed number (usually 64
or 112 depending on the disk format) of directory entries,
each of 32 bytes. Each directory entry refers to a file,
sub-directory or the volume label. A sub-directory also
consists of a series of 32 byte directory entries, but is a
variable size, with more space being allocated when it
becomes full. The format of directory entries is exactly
as for MS-DOS 2.00 (see section 4.3).

A file or a sub-directory consists of a chain of
clusters, with the first cluster number being stored in the

directory entry for the file. The remaining clusters of
the file can be found by following a chain of cluster
numbers in the FAT. The FAT also indicates which clusters

on the disk are free.

4.1 BOOT SECTOR

The boot sector is always the first sector of the disk,
put there by the FORMAT and DISKCOPY programs. This format
is designed to be compatible with all versions of MS-DOS up
to version 2.00 (at least) and with MSX-DOS. Although it
is called the boot sector it does not contain any boot code
used by EXDOS since this facility is provided by the
"EXDOS.INI"™ file (see section 2.1).

00h - OEBh \ Dummy 8086 jump instruction
0lh - OFEh > for MS-DOS compatibility.
02h - 090h /

03h...0Ah - "EXDOS1.0" System identification string.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 22

0Bh...1lDh - UPB (may be absent on early MS-DOS disks). See
"unit handler specification"™ (PER-3) for
details.

1Eh - Z-80 "RET" instruction to ensure MSX
compatibility. MSX wuses this as the entry
point to a boot program which boots up MSX-
DOS if present. Not used by EXDOS which
uses the "EXDOS.INI" facility for starting

IS-DOS.
1Fh...3Fh - Not used. This 1is 33 bytes reserved for
compatibility with possible future

extensions to the MS-DOS or MSX-DOS boot
sector definition.

40h...45h - "VOL_ID" String to indicate that volume ID and
dirty disk flag are present.

46h - Dirty disk flag (see section 4.5).
0 => clean disk
1 => dirty disk

47h...4Ah - 4 byte unigque volume ID. This is a random
number put on by FORMAT and DISKCOPY to
allow full checking of disk changes (see
section 4.4).

4Bh..l1FFh Not used

FILE ALLOCATION TABLE

The file allocation table consists of a 12-bit entry for
each cluster on the disk. The first two entries correspond
to clusers 0 and 1 which do not exist, so the FAT entry for
the first cluster (cluster 2) starts in the fourth byte of
the FAT. The first three bytes in the FAT are as follows:

Byte 0: FATID byte, always F8h...FFh. (see PER-3)
Byte 1: Always FFh
Byte 2: Always FFh

The FATID byte is used to determine disk format if there
is no UPB in the boot sector (see PER-3), otherwise it is
not used.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 23

Each cluster entry 1is zero if the <cluster 1is free
otherwise the cluster is part of a file and the value of
the entry is the number of the next cluster in the file,
with FF8h...FFFh indicating the last cluster in the file.
Thus the clusters which make up the file are chained
together in the file. The values FFOh...FF7h are used to
indicate reserved clusters if they are not part of a chain,
with FF7h indicating a bad cluster which must not be used.

A disk can contain any number of copies (normally two)
of the FAT. The multiple copies are used in case the first
copy becomes unreadable due to a disk error. Normally all

copies are identical but see section 4.5 for an exception
to this (to allow un-deletion).

4.3 DIRECTORY ENTRY FORMAT

All directory entries in the root directory or sub-
directories are 32 bytes long with the following format:

00h...07h - Filename. 8 <characters, left justified and
padded with spaces. The first byte of this
indicates the status of the entry:
00h - Never been used.
E5h - Entry deleted.
05h - First filename character is E5h
Any other character is the first character
of the filename. Note that the two special
names "." and ".." are reserved to point to
this directory and its parent.
08h...0Ah - Filename extension.
0Bh - Attribute byte. See section 4.3.1.
OCh...15h - Reserved.

16h...17h - Time \ Format exactly as in FCB
18h...19h - Date / (see section 3.3.1)

1Ah...1Bh - Starting cluster of file (0002h...0FFF7h).

1Ch...1Fh - Size of file in bytes, lowest byte first.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 24

4.3.1 FILE ATTRIBUTE BYTE

The allocation of bits in the file attribute byte in the

directory entry is given below. The same bit assignments
are used for the attributes byte in an FCB (see section
3.3:1). Note that certain combinations of bits are
meaningless (both volume label and sub-directory set for
example). See section 3.7 for how to use these attributes
in directory searches, and section 3.14 for how to change
them.

Bit 0 - Read only. If set then this file cannot be written
to or deleted, but can be read or renamed.

Bit 1 - Hidden file. If set then this file will be
excluded from normal directory searches and thus
from directory listings.

Bit 2 - System file. If set then this file will be
excluded from normal directory searches.

Bit 3 - Volume 1label. If set then this entry defined the
name of this volume. Can only occur in the root
directory.

Bit 4 - Sub-directory. If set then this entry is a sub-
directory rather than a file and so cannot be
opened for reading or writing.

Bit 5 - Archive bit. This bit is set whenever the file has
been written to and closed. It can be examined
and reset by an ARCHIVE program to determine
whether this file has been changed and should be
backed up.

Bit 6 - Reserved (always 0).

Bit 7 - Reserved (always 0).

4.4 VOLUME ID

The format of the boot sector allows an 4 byte wunique
volume identification to be stored (see section 4.1). This
is a random number put there by the FORMAT and DISKCOPY
programs to distinguish this disk from all others. There
is also a "VOL_ID" string which can be checked to determine
whether the volume id is present. This ensures
compatibility with MS-DOS and MSX-DOS.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 25

When a unit handler (such as UNITH) gets a BUILD UPB
command it returns the volume id from the disk (if it is

present) to EXDOS. EXDOS wuses this function, in
conjunction with MEDIA CHECK, to determine whether the disk
has been changed for a different one. If so, and if EXDOS

has any dirty buffers, then the user will be warned (see
section 8.2). This ensures that dirty buffers can never be
flushed onto the wrong disk.

When a file is opened, or a "search for first" function
call done, EXDOS copies the current volume id for the drive
into the FCB. All future uses of this FCB then check that
the volume id is correct. If not the user is given the
option of inserting the correct disk, or using the current
one anyway (see section 8.2). This ensures that data can
never be read from or written to the wrong disk by
accident.

4.5 DIRTY DISK FLAG (UN-DELETION)

Normally in MS-DOS compatible systems, when a file is
deleted the clusters which were allocated to it are marked
as free in all copies of the FAT. This means that there is
no way to un-delete a file which has been accidentaly

deleted since the chain cannot be re-built. EXDOS however
allows files to be un-deleted as 1long as no space
allocation operations have been performed since the delete
(ie no files created of data written to disk). This

facility is only available on disks which contain the
"yolume id"™ in the boot sector. Thus if a disk was created
by MS-DOS or MSX-DOS then files cannot be un-deleted from
it.

In EXDOS when a file is deleted from a disk with a valid
volume id, the clusters are freed in all copies of the FAT
except the last one, and the "dirty disk" flag in the boot
sector is set to 1. Thus the cluster chain for the file is
still available in the last copy of the FAT. The CHKDSK
program, which scans the FATs and directories, can
therefore re-build the deleted file (or files).

When any cluster allocation operation is performed, the
dirty disk flag is examined. If it is =zero then the
operation continues normally. However if it is non-zero
then the last copy of the FAT will be updated to be the
same as the others before looking for a free cluster. This
is necessary to ensure that the last copy of the FAT does
not contain a mixture of the remnants of files which have
been deleted and then the space re-allocated.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 26

5. DISK BUFFERING

Where possible, EXDOS does data transfers directly into
user's memory. However when incomplete sectors are
transferred, or transfers run across segment boundaries, it
is necessary for buffering to be used. Buffers are also
needed for EXDOS to manipulate directories and FATs. EXDOS
therefore maintains a 1linked list of 512 byte sector
buffers.

EXDOS permanently allocates itself three sector buffers
when it is initialised. These are in its system segment
RAM and can never be removed. Additional sector buffers
can be created at any time by open a channel to a special
device called "BUFFER:" which EXDOS links in.

The order of buffers on the chain is continuously being
changed by EXDOS to provide a priority scheme so that
frequently accessed data, such as FAT sectors tend to stay
resident in sector buffers when they are needed.

Sk CREATING ADDITIONAL SECTOR BUFFERS

To create some extra disk buffers, the user simply opens
a normal EXOS channel to device "BUFFER:", using the unit
number to specify how many buffers he wants in the range
1...30. There can be as many separate buffer channels open
as desired, although if too many buffers are added then the
system can slow down as it takes EDXOS longer to search its
buffer chain.

W-en the buffer channel is opened, the disk device will
obtain the regquired amount of channel RAM (about 540 bytes
per buffer), set up the sector buffers and link them into
EXDOS's buffer chain. EXDOS will then use the new buffers
freely until the channel is closed. When this occurs, any
data in the buffers is flushed and the buffers are unlinked
from the chain. If the channel RAM for a buffer channel is
moved then the pointer which make up the buffer chain will
be adjusted to keep the chain intact.

If a system reset occurs then a "forced close" of the
buffer channels will occur without calling the buffer
device, and the EXDOS ROM will be re-initialised (along
with all other ROMs). When this occurs EXDOS will 1look
along its chain of buffers (which will still be intact
since EXOS does not zero the RAM) and flush any that are
dirty. It then removes any extra buffers from its chain so
it is back to using the default three buffers until a new
buffer channel is open.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 27

5.2 ADDITIONAL PERMANENT BUFFERS

The EXDOS CLI "BUFFERS" command can be used to specify a
number of permanent buffers which EXDOS will maintain in
addition to its three default buffers. EXDOS uses channel
number 254 to provide these buffers. When the "BUFFERS"
command is received (typically in the EXDOS.INI file),
EXDOS opens an appropriate buffer channel wusing channel

number 254. It remembers the number of buffers requested
and after any system reset it will re-open the channel. If

the channel 1is closed by the user it will note this fact
and re-open it as soon as it gets a chance (next system
extension scan for example).

The number of additional permanent buffers can be
changed at any time by giving an appropriate "BUFFERS"
command, the old channel will be closed before opening the

new channel which may have fewer or more buffers. A
"BUFFERS 0" command will remove all additional permanent
buffers

6. DISK DEVICE

The disk device driver is linked into EXOS as a "user"
device when EXDOS starts up, and re-linked whenever a
system reset un-links it. (A system reset 1is always
followed by re-initialising system extensions.)

Although the disk device is described as a single
device, several device descriptors are in fact linked in
for it. There is one device descriptor with the name
"DISK", which is set up as the EXOS default device. When
this device is used the unit number specifies which drive
is reqguired.

In addition a separate device descriptor is linked in
for every drive which is supported, with device names "A",
"B",.... "Z". When these devices are used, the unit number
passed by the wuser 1is ignored and the device name
determines the drive. This allows the user to refer to the
disk drives by letters rather than numbers, to Dbe
consistent with other operating systems (CP/M, MSX-DOS and
MS-DOS for example).

The unit number given when opening a channel to device
"DISK" is interpreted as follows:

0 Current default drive. If the user does not
specify a unit number to the "DISK" device
then EXOS will use zero.

1...26 Drives A: to Z: (also l: to 26:)
27..255 Not allowed

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 28

6.1

7.

DISK I/O CHANNELS

Disk I/0 channels are always opened (or created) to a
specific file, with a default filename being used if the

user gives a null filename. The OPEN and CREATE functions
match up exactly to the appropriate FISH calls described
in section 3. The filename given by the user 1is passed
directly to an "open channel" or "create channel" function

call after taking the last item off as the filename, and
storing it in an FCB which the disk device sets up in its
channel RAM area. This allows sub-directories to be
accessed by means of a path name.

Data can be read or written using the EXOS block or
character function calls which are easily translated into
FISH read and write calls (writing is done without zero
£i11). Random access can be performed by using the EXOS
"set and read channel status" function to read the current
value of the 32 bit file pointer or to move 1it. This
function also returns the file size. See the EXOS kernel
specification for details (protection byte not supported).

The "read status" EXOS function returns either C=0FFh
(EOF) if the file pointer is at or beyond the end of file,
and C=0 (character ready) otherwise. It never returns C=l.

The only special function call which the disk device
supports is FLUSH to ensure that any dirty buffers have
been written to disk. This is the same special function
code (@@FLSH=16) as used by the NETWORK device. Although
this function must be sent to a specific disk channel, it
will flush all dirty buffers for any disk channels.

EXDOS CLI COMMANDS

The EXDOS CLI interprets system extension command
strings which are passed around system extensions by a
"scan extensions" EXOS call. This call can be made by any
applications program and so the EXDOS CLI commands are
available from any program which supports these commands.
If it is possible to use the "HELP" facility in a program,
then all the EXDOS CLI commands will be available.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 29

Many of the commands wuse the default channel for
printing results and messages, and also for reading the
response to user prompts. This default channel will also
be used for any EXDOS disk error prompts which occur.
Normally the default channel will be the main editor
channel. If an error occurs during any of these commands
then the EXOS error code will be returned and normally the
calling program will the display the appropriate error
message

Below 1is a list of all the internal commands contained
in the EXDOS ROM. These are explained in more detail in
the sections which follow.

DIR - prints directory of disk

DEL - deletes a disk file

REN - renames a disk file

ATTR - changes attributes of disk file

TYPE - types a file on the screen

COPY - copies files

MOVE - moves files from one directory to another
DATE - sets or displays system date

TIME - sets or displays system time

SET - sets or displays EXOS variables

LOAD - loads various module formats

ASSIGN - maps two drive identifiers to one drive

MAPDISK - Allows one drive to be used for two disks
BUFFERS - creates "permanent" disk buffers

RAMUNIT - installs or removes the RAM disk

FORMAT - formats blank disks

EXDOS - System use

CD - change current directory path

MD - make a new sub-directory

RD - remove a sub-directory

7:3 COMMAND PARAMETERS

EXDOS CLI commands such as "COPY" take parameters
specifying the source or destination of data. There are
various different ways in which this can be specified, not
all of which are allowed in all commands. The allowed
types for each command are 1listed with the command
descriptions Dbelow. This section specifies the wvarious
types of parameter:

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 30

<file> Example: A: 2: FRED.COM x\y123\XYZ.BAT
This can be any string which is acceptable to
an "open channel" FISH function, using an

indirect FCB. It may specify the drive, a
directory path and a filename, all of which are
optional although some commands may insist on the
filename.

<chan> Example: £0 £107 g£222
This is a channel number which specifies an
EXOS channel which must be already open. Data
will be read from or written to this channel as
appropriate for the command.

<dev> Example: NETO: TAPE: FRED DISK3:X\Y\Z

This 1is a string which will be given to EXOS
to open or create a channel with. It is used in
some commands if FISH rejects the string
parameter with a .NDISK error. EXDOS will open
or create the channel, read or write data from it
and then close it. It uses channel numbers £253
and £252 for this.

T2 DIR COMMAND
DIR <file>

The DIR command prints a directory 1listing to the

default channel. The parameter "<file>" can be any valid
pathname with or without a filename, or can be omitted
altogether. If a filename, which may be ambiguous, is

included then only files which match the filename will be
listed, otherwise all files in the specified directory will
be listed. If the pathname is ommitted then all files in
the current directory for that drive will be listed.

The directory 1listing includes the volume name (if
present), the full path of the directory being listed and
the amount of free space on the disk. For each file the
listing gives its name, size in bytes, date and time of
last modification and an indication of whether it is read
only. Sub-directories are included in the directory
listing. Hidden files and system files are not listed.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 31

7.3 DEL COMMAND
DEL <file>

This command deletes all files 1in the specified
directory which match the filename. If the filename is
omitted or is "*,*" then all files in the directory will be
deleted but EXDOS will first prompt:

Are you sure (Y/N)?

Sub-directories cannot be deleted with this command, and
neither can system files or read only files.

7.4 REN COMMAND
REN <file> <file>

The first "<file>" specifies a directory path and
filename. The second "<file>" is just a filename with no
directory path or drive name. Both filenames can be
ambiguous, and the "filenames" can in fact specify sub-
directories allowing these to be renamed, although any
directory 1in the current directory path for a drive cannot
be renamed.

All files in the directory which match the first

filename will be changed to the second. Character
positions corresponding to "?" or "*" in the second
filename will remain unchanged. The command will not
create duplicate files in the directory. An attempt to do
this will result in a .FILX error. If the new filename
would have embedded spaces in then they will be replaced
with " _".

7«5 ATTR COMMAND
Format yet to be defined. This command allow the read

only and hidden bits of a file or sub-directory's
attributes to be changed.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 32

7.6 TYPE COMMAND
TYPE <file>|<dev>|<chan>

Data will be read from the specified source and written
to the default channel using EXOS single character reads

and writes. TAB characters will be expanded to eight
character boundaries and other control characters will be
suppressed (apart from CR and LF). The process will

continue until an error occurs on the source (such as end
of file) or a Ctrl-Z character is read.

A | COPY COMMAND
COPY <source> <dest>
This command copies data from one file to another. More
than one file can be copied by specifying an ambiguous
filename and the data can be copied to any other device or
channel rather than a disk file. The copy operation will

be done wusing 1large block reads and writes to minimise
selection of disk drives.

7.8 MOVE COMMAND
MOVE <filel> <file2>

The "<file2>" parameter must specify a directory path

without a filename and must be unambiguous. The "<filel>"
parameter 1is a filename which can be ambiguous and can
include a directory path. All files and sub-directories

which match <filel> will be moved to the directory
specified by <file2>. The data of the files is not copied,
only the directory entries are manipulated. A sub-
directory cannot be moved if it is in the current directory
pathname, and also a sub-directory cannot be moved into one
of its own decendents.

19 DATE COMMAND
DATE string

The system date will be set to value specified in the
string wusing the format is "DD-MM-YY". Any reasonable
separator can be used in place of the "-" and if the month
and or year is omitted then it will be left unchanged. If
there 1is no string parameter at all then the current date
will be displayed.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 33

7.10 TIME COMMAND
TIME string

The system time will be set to the value specified in
the string using the format "HH-MM-SS" (24 hour «clock).
Like DATE, any reasonable separator can be used in place of
the "-" and the minutes and seconds can be ommitted if
desired. If the string is omitted altogether then the
current time will be displayed.

7.11 SET COMMAND
SET <variable> <value>

Sets EX0OS variables. The <variable> and <value>
parameters each specify an 8 bit number. If space allows
then string parameters will be supported with "ON" and
"OFF" in addition to number for the value and various keys
for the variable names.

o LOAD COMMAND
LOAD <source>

The "source" parameter can be a channel number, device
or disk file. If it is a disk file or device then an EXOS
channel will be opened and will be used for an EXOS "load
module” function call. This allows system extensions (such
as new unit handlers) or new applications programs (such as
IS-DOS) to be loaded. EXDOS does not support any module
header types itself.

7.13 ASSIGN COMMAND
ASSIGN <drivel>=<drive2>

This command sets <drivel> up as another name for

<drive2>. It is implemented at a very low level so any
file open to <drivel> will get "redirected". Therefore
this command should not be given when there are any files
open to <drivel>. Before making the re-assignment all

sector buffers are flushed and invalidated to ensure that
data does not get onto the wrong disk.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 34

The physical <drive2> must be a drive which is currently

supported in the system. However the logical <drivel> can
be any of the logical drives "A:" to "Z:", whether or not
it 1is currently in the system. As many logical drives as

desired can be ASSIGNed to one phsical drive.

If the parameters are omitted then all assignments will
be cancelled and if just one drive identifier is given then
the assignment for that drive will be cancelled.

This command is like the ASSIGN command in MS-DOS and is
provided to enable a program which assumes a particular
drive to use another drive. It should not be confused with
the MAPDISK command which is intended to support single
drive systems.

7.14 MAPDISK COMMAND
MAPDISK <drivel>=<drive2>

Although this command has a similar form to ASSIGN it
has a rather different function. If the command:

MAPDISK B:=A:

is given then all references to drive B: will be translated
to drive A:, but EXDOS will still consider them as
seperate physical drives and therefore as seperate disks.
Whenever drive A: or B: is accessed, if it is not the same
one as was last accessed then EXDOS will prompt for the
correct disk to be inserted (see section 8.2), and will
then carry on, checking that it is the correct disk. A
MAPDISK can be cancelled by just specifying <drivel>.

Note that <drivel> can only be one of the four internal
drive identifiers (A:, B:, C:, D:), but <drive2> can be any
drive which is linked in. T*is facility is mainly provided
to support single disk drive systems. In this case the
MAPDISK command will be included in the EXDOS.INI file and
then commands like "COPY" can use drive identifiers "A:"
and "B:" with all the prompting for disk changes being done
by EXDOS. The "volume id"™ allows EXDOS to ensure that the
correct disk is always inserted (see section 4.4)

If MAPDISK is used in conjunction with ASSIGN (which 1is
not reccomended as it can get very confusing), then in
translating a logical drive number, the ASSIGN is done
first, followed by the MAPDISK.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 35

T+15 BUFFERS COMMAND
BUFFERS n

Specifies that "n" "additional permanent sector buffers"”
(0<=n<=30) are to be used. EXDOS will maintain channel 254
open for these buffers whenever it can. Buffers created in
this way will still be allocated after a switch to a new

applications program (see section 5.2). Any existing
additional permanent buffers will be closed before opening
the new ones. "BUFFERS 0" will remove all additional

permanent buffers .

7.16 RAMUNIT COMMAND
RAMUNIT <drive> <n>

Specifies that the RAM disk is to be set up using the
specified physical drive identifier and with "n" 16k

segments of RAM for its data storage. If there are not
enough free segments then a .NORAM error will be returned,
otherwise the RAM disk will be set up. If a RAM disk was

already in existence then the drive number cannot be
changed, and it cannot be made smaller although it can be
made bigger. If "n" is zero then the currently defined RAM
disk will be deleted and the RAM segments freed. It 1is
conventional to use drive "Z:" (the last possible drive)
for the RAM disk to prevent confusion with extension unit
handlers which may be linked in.

T.17 FORMAT COMMAND

The built in FORMAT command will be fairly simple, just
to ensure that the system can be used without any disk

resident software. It is expected that IS-DOS will be
supplied with a more sophisticated disk resident FORMAT
program.

7.18 EXDOS COMMAND

This 1is not a command to be typed by the wuser, it is
provided for programs. To ensure that it is not typed by
accident, it is immediately followed in the command string
by a <0FFh> byte. It is used by RAM resident extension
unit handlers to link themselves into EXDOS, and can also
be used to find out the address of EXDOS working RAM to
enable IS-DOS to call FISH.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - ©System Specification Page 36

T19 CD, MD and RD COMMANDS

CD <pathname> Change directory
MD <pathname> Make directory
RD <pathname> Remove directory
The "CD" command specifies a drive and pathname. The

whole directory chain must exist, and if it does then it
will be made the current directory for the specified or the
default drive. The command "CD x:\" will reset the current
directory to the root, and the command "CD x:" will display
the current directory path for this drive.

The "MD" command specifies a drive and pathname. All
directory in the path must exist except the last one which
must not, and will be created. The new directory will
initially be empty apart from the "." and ".." entries.

The "RD" command specifies a drive and pathname. The
directory specified by the path must be empty and if it is
will be deleted. If it is not empty then a .DIRNE error is
given. The current directory cannot be removed.

8. DISK ERROR HANDLING

There are many errors which can result from using EXDOS.
Most of these, such as "file not found" and "disk full" are
simply returned to the caller (via FISH, the EXDOS CLI
orthe DISK DEVICE) who will normally print an error
message.

However there are a set of errors, the "disk errors"
which occur in FISH and can frequently be put right by the
user. Examples of these are "not ready" (no disk in drive)
and "wrong disk in drive". When one of these errors occurs
EXDOS prints an error message and then prompts the user for
a response which is normally abort, retry or ignore (like
MS-DOS). Through FISH, the user can define a routine which
can interpret some of these error codes itself (see section
8.1). This facility is normally only available when in IS-
DOS.

The exact responses and their meanings vary for
different errors but generally "retry" means that the
failed operation will be retried, and possibly will result
in the error occurring again. "Ignore" means that
processing will continue, probably with wrong data and so
this response 1is not recommended.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 37

"Abort" means that processing will return to the higher
level with an .ABORT error code, and the real error code
will be available in the EXOS variable "DISK_ERR". If FISH
was called from the DISK DEVICE or EXDOS CLI then these
will stop the command and return the original error code
(not .ABORT). If it was called from IS-DOS then any
transient program which is running will be aborted and
control will return to the IS-DOS CLI (see PER-16).

8.1 USER ERROR VECTOR

The user can set up a routine to intercept these errors
before EXDOS prints its messages and prompt, by making a
suitable FISH call (see section 3.28). The user's routine
will be entered in Z-80 page-3, with the system segment
containing the stack in page-2, page-l1l un-defined and page-
0 containing the page zero segment. This paging must be
preserved except for page-1l.

The parameters passed to the routine and the results it
returns are given below. All other main registers (C, DE,
HL, IX) may be corrupted but the alternate register set
(AF', BC', DE', HL') must be preserved.

Parameters: IY -> EXDOS RAM area
B = EXOS error code
A= 0
Results: IY -> Unchanged
A = 0 => use EXDOS error handling
1 => Abort

2 => Retry
3 => Ignore
B = Unchanged if A=0

The routine can make EXOS calls but should obviously not
call FISH either directly or indirectly to avoid recursion.
If the routine returns A=1, 2 or 3 then EXDOS's error
response will be supressed.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 38

8.2

DISK ERRORS and RESPONSES

Any errors which come from a wunit handler are put
through this mechanism, apart from ones which are
interpreted by FISH. These all have straightforward
interpretations of the abort/retry/ignore response. They
are (for the internal unit handlers):

.ICMD - Invalid unit handler command

.IUNUM - Invalid unit number

.ISECT - Invalid sector number

.NRDY - Not ready

.VERFY - Verify failed

.DATA - CRC error or lost data

.RNF - Record not found

.WPROT - Write protected disk

.NDOS - Not a vaild EXDOS disk

The other errors are generated inside EXDOS. These are:

.WDISK - Wrong disk in drive. This is generated when a

disk change operation has occurred while EXDOS
has dirty buffers for that disk. RETRY allows
the wuser to put the correct disk back. IGNORE
allows it to carry on with the new disk and the
data in the dirty buffers will be lost. ABORT
stops the operation.

.WFILE - File access of wrong disk. This occurs if the
volume id. in an FCB does not match the current
disk in the drive. RETRY allows the user to put
the correct disk back. IGNORE will carry on with
the disk operation on the new disk which is not
recommended since it could corrupt the disk.
ABORT stops the operation.

.WDRV - Inset disk for drive X:. This error can only
occur if the MAPDISK command has been used (see
section 7.14). It indicates that the user should
put the correct disk for the appropriate 1logical
drive into the actual drive and then RETRY. The
operation cannot be ABORTed or IGNORed and so the
default handler prompts for an ENTER rather than
the usual abort/retry/ignore. Once the user has
pressed ENTER, the new volume id. will be checked
and a .WFILE or .WDISK error will result if it is
not the correct disk.

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



26-Apr-85 EXDOS - System Specification Page 39

8.3 Error Codes

There are many error codes which can be returned by the
various parts of the EXDOS system. These are all EXOS
error codes although many of them are new codes which are

defined by the EXDOS ROM. The EXDOS ROM provides error
messages (using the system externsion scan facilities) for
most of its important error codes. Below is a complete

list of all those currently defined.

Note: "x" => Error code already defined in EXOS.
""" => Error code passed to error vector.
+ .ICMD - Invalid unit handler command
+ .IUNUM - Invalid unit number to unit handler
+ . ISECT - Invalid sector number to unit handler
+ .NRDY - Not ready
+ .VERFY - Verify failed
- .DATA - CRC or loas data error
+ .RNF - Record not found (bad sector)
+ .WPROT - Write protected disk
+ .NDOS - Not an EXDOS compatible disk
+ .UFORM - Unformatted disk
+ .WDISK - Wrong disk in drive
+ .WFILE - File access to wrong disk
+ .WDRV - Insert disk for drive "x:"
. ICALL - Invalid FISH function call
* .PROT - Attempt to write to read only file
.IDRV - Invalid drive specification
.NOFIL - File not found
.DRFUL - Directory full
.DKFUL - Disk full
.DUPF - Duplicate file name
* .EOF - End of file
.NODIR - Directory not found
.DIRX - Directory already exists

.IPATH - Invalid pathname string

.NDISK - Not a disk device string

.IFNM - Invalid filename

.DIRNE - Directory not empty

.OV64K - Read or write tried to overflow above FFFFh

++++++++++ END OF DOCUMENT ++++++++++

PER-5/2 Copyright (C) 1985 Intelligent Software Limited



