Enterprise IS-BASIC v3.0 - Specificatiocn
22 aApril 1985

CONTENTS

1. Introduction
2. Formal Specification

1 Programs

2 Exprassions
.3 Variables

4 Identifiers
5 Constants

6 Characters

3. Expressions and Arithmetic

3.i Numbers and Strings
3.2 Operators and Precidence
4. General Rules of Use
5. Commands and Statements
6. | Functions
7. Errors
8. Index

Copyright (c) 1985 Intelligent Softwars Ltd







Enterprise IS-BASIC v3.0 - Specification 1. Introduction

1. INTRODUCTION

This document describes IS-BASIC version 3.0 as imple-
mented on the Enterprise under the EXOS operating system.

Version 3 and above includes many small

enhancements
over the previous versions 2.0 and 2.1 .

IS-BASIC 1is an intesrpreted BASIC based on the proposed
ANSI Standard X3J2/82-17 and is compatible with the ISO 6373
Standard for Minimal BASIC which is the proposed BS 6373
Standard for Minimal BASIC. The OPTION BASE construct which
is one of the two UK objections to the adoption of this
Standard as a British Standard is not provided, being made

somewhat redundant by the more flexible syntax of the ANSI
Standard.

IS-BASIC provides a command loop from which programs
and commands can be entered via the keyboard. Many
facilities are provided for the editing of programs such as
the AUTO, RENUMBER and DELETE. The ability exists for thers
to be more than one program in memory at any one time, and
from immediate mode any program may be made the current
program so that it may be edited or run independantly of the.
other programs currently in memory. A running program may
invoke another program by name that is either currently in
memory or is on cassette / disk. The passing of parameters
by value is supported during this program chaining.

This is an extension of the various statements in IS-
BASIC which enable the structured programming ‘constructs
requirad of modern programming languages to be used, such as
repeat-until and do-while loops (implemented in IS-BASIC
with DO WHILE/UNTIL ...LOOP WHILE/UNTIL loops), CASE
selections and multi-line IF...ELSE...THEN constructs.

Mora traditional BASIC statements such as GOTO, GOSUB
and ON..GOTO are provided for compatibility.

This document is arranged in two main parts split over
several chapters. The two main parts are:

- Formal BNF specification of the primary elements of
IS-BASIC (chapters 0 to 2)

- A more readable and general description of the
statements, commands and functions available £from
IS-BASIC (chapters 3 onwards)

Copyright (c) 1985 Intelligent Software Ltd Page ljl






Enterprise IS-BASIC v3.0 - Specification

2.

2. BNF description

FORMAL BNF SYNTAX SPECIFICATION

This chapter gives a formal syntactic specification of
IS-BASIC in a modified form of BNF. The semantic action

associated with each syntactic construct is specified else-
where. :

Note that certain (contsxt dependant) syntactic con-
structs that are in fact not allowed or are meaningless are
not ruled out by the notation used (described below), but
are mentioned in the more general descriptions elsewhere
(eg. Chapter 5 'Commands and Statements'). Similarly,
certain limits are also not specified by the notation. These
are also described in the more general descriptions or are
limited by other factors such as the maximum length of
program lines or the amount of memory available.

BNF items in lower-case are "metanames" ie. the names
of syntactic objects, and are defined in tarms of other
metanames. To prevent this process recursing indefinitely,
certain metanames are 'tsrminal' metanames and are generally
ASCII characters or "strings delimitad by single quotes.
Textual comments are given between brackets ( [ and 1 ).

The mataname '?' indicates that the preceding object is
optional, the metaname '*' indicates that the preceding
object cam be repeated zero or more times, and the metaname
'/' indicates that either the the preceding or following
object may be given. The precedence of ?, * and / is the
same, and ? and * group from left to right and / groups from

right to 1left. The precedence may be overriden with
paranthesis ('(' and ')').

Copyright (c) 1985 Intelligent Software Ltd Page 2-1



Enterprise IS-BASIC v3.0 - Specification

2.1 Prodrams

2.1.1 General description

A BASIC program

2.1 Programs

constant of a number of 1lines each
preceded by a line-number which serves a label for the

line

to facilitate editing and as a label for the first statement
on the 1line for certain statements and exception-handler

related functions.

2.1.2 Syntax

program
program-name-line

line-number
program-name

tail

tail comment
remark-string
end-of~-line
program-line
line

statement~line
statements
statement

program-name-line? program-line*
line-number 'PROGRAM' program-
name parametar-list? tail

digit digit? digit? digix?
quoted-string / unquotad-string-
character

tail-comment? end-of-line

'1' remark-string

charactear*

[ ASCII carraiage return |

line / statement-line

case-line / data-line / def-

line / dim-line / do-line / else-
line / else-if-line / end-line /
end-def-line / end-handler-line /
end-if-line / end-select-line /
end-when-line / for-line /
handler-line / image-line / if-
line / look-line / loop-line /
next-line / numeric-line / on-
line / option-line / ram-line /
retry-line / select-line /
string~line / when-line
line-number statements? tail
statement (':' statement)*
allocata~-statement / ask-
statement / call-statement /
capture-statement / cause-
statement / chain-statement /
clear-statement / close-
statement / code-statement /
continue-statement / copy-
statement / date~statement /
display-statement / envelope-
statement / exit-def-statement /
exit-do-statement / exit-for-
statement / exit-handler-
statement / ext-statement /
flush-statement / get-statement /
gosub-statement / goto-
statement / graphics-statement /

Copyright (c) 1985 Intelligent Software Ltd Page 2-2



Enterprise IS-BASIC v3.0 - Specification

command

2.1 Programs

input-statement / let-statement /
line-input-statement / lprint-
statement / open-statement / out-
statement / ping-statement /
plot-statement / poke-statement /
print-statement / randomize-
statement / read-statement /
redirect-statement / restore-
statement / return-statement /
run~-statsment / set-statement /
sound-statement / spoke-
statement / stop-statement /
text-statement / time-statement /
toggle-statement / trace-
statement / type-statement /
wait-statement

allocate-statement / ask-
statement / auto-command / call-
statament / capture-statament /
cause-statement / clear-
statement / close-statement /
code-statement / continue-
statement / copy-statement /
date-statement / delete-command /
display-statement / chain-
statement / edit-command /
envelope-statament / ext-
statement / flush-statement /
get-statement / graphics-
statement / info-command / let-
statement / list-command / llist-
command / load-command / look-
line / lprint-statement / merge-
command / new-command / ok-
command / open-statement /
option-line / out-statement /
ping-statement / plot-statement /
poke-statement / print-

statement / redirsct-statement /
rem-statement / renumber-

command / run-statement / save-—
command / set-statement / sound-
statement / spoke-statement /
start-command / text-statement /
time-statement / toggle-
statement / trace-statement /

type~statement / verify-command /
wait-statement

Copyright (c) 1985 Intelligent Software Ltd Page 2-3



Enterprise IS-BASIC v3.0 - Specification 2.1 Programs

A line—number of zero is not allowed, and leading zeros
have no effect.

The maximum length of a line is 250 characters, and is
terminated by an ASCII carriage return. Characters between
the 250th character and the carriage return are ignor=ad.

2.1.3 Semantics

The program-name-line allows the program to be refered
to by name and may also serve as a comment. It forms the
operand of the chain-statement and may also be used in the
save-command. In this case, only the quoted-string form of
program-name is used; if the other form is used then the
effect obtained when wusing chain-stataments and save-
commands is that obtained when there is no program-name-line
ie. the program cannot be rzfered to by name. Similarly a
parameter-list given in a program-name-line is only reacog-
nised when the program-name is a quoted-string. A program-
name-line may occur anywhers in a program but will only
serve to name the program if it appears on the first line of
the line of the program. In any case the effect of executing

a program-name-line is to cause execution to continue to the
next line of the program.

The parameters to the program specified 1in the
parametar-list in the program-name-line ars passed by value.
An exception will result if the parameters being passed are
of the wrong type, but no exception will occur if the number
of parameters do not match. Extra parameters in the chain-
statement or run-command are ignored, and extra parameters
in the program-name-line are set to zero for numeric
parameters and the null string for string parameters.

Lines in the program are exescuted in sequential order
according to their line numbers until:

- some other action is specified by the execution of a
program-line

- an exXecption occurs and a user-defined
handler is active

- exXxecution of the program ends as a result of execu-
ting an end-statement, a stop-statement, a chain-
statement or a run-statement

execution of the program ends as a result of the STOP
key being pressed.
- execution of the program ends by there being no more

statements or 1lines to execute in the sequential
order of the program.

exception

Copyright (c) 1985 Intelligent Software Ltd Page 2-4



Enterprise IS-BASIC v3.0 - Specification

2.1.4

2.1.5

2.1 Programs

Examples

10 PROGRAM "myprog" (A,B,CS$)

20 IF A=B THEN ! no error

30 PRINT "OK": PRINT: PRINT

40 END IF

100 PROGRAM TEST ! not chained to
Remarks

A command may be entered for immediate execution. This
is called 'immediatz mode', and in this case no line-number
is given. Program execution starts when in immediate mode a
command that has this effect 1is typed (eg. the run-
statement). After execution of the program has ended,
immediate mode is returned to.

Copyright (c) 1985 Intelligent Software Ltd Page 2-5




Enterprise IS-BASIC v3.0 - Specification 2.2 Expressions

2.2 Expressions

2.2.1 General description

Expressions ars obtained by applying the primary
operations associated with each tyoe (addition, subtraction,
multiplication, division and involution for numeric
expressions and concatenation and slicing for string
expressions) to values obtained from constants, simple-
variables, array-elements and functions-refs. Since the
latter two may also invoke the expression evaluating

mechanism, the process is recursive.

2.2.2 Syntax

expression

numeric-expression / string-
expression '
numeric-disjunction
logical-disjunction / bitwise-
disjunction

numeric-conjunction ('OR'
numeric-conjunction)*
numeric-conjunction ('BOR'
numeric-conjunction)#*
logical-conjunction / bitwise-
conjunction

comparison ('AND' comparison)®*
comparison ('BAND' comparison)*
'NOT'? (numeric-comparison /
string-comparison)
arithmetic-expression (logical-
operator arithmetic-expression)*

numeric-expression
numeric-disjunction

logical-disjunction

bitwise-disjunction

numeric-conjunction

logical-conjunction
bitwise-conjunction
comparison

itn

numeric-comparison

string-comparison = string-expression logical-
operator string-expression

logical-operator = < /o=t o/ oig= /s /
15=1 / =31

arithmetic-expression

sign? arithmetic-term ( ('+' /
'-') arithmetic-term)*

factor ( ('*' / '/') factor)=*
numeric-primary ('~' numeric-
primary)*

numeric-rep / numeric-variable /
numeric-function-ref / ( ‘'(°
numeric-expression ')!' )
numeric-function argument-list?
numeric-supplied-function /
numeric-defined-function
numeric-supplied-function= abs-call / acos-call / angle-
call / asin-call / atn-call /
bin-call / black-call / blue-
call / ceil-call / cos-call /
cosh-call / cot-call / csc-call /
cyan-call / deg-call / eps-call /

arithmetic-term
factor

numeric-primary

numeric-function-ref
numeric-function

Copyright (c) 1985 Intelligent Software Ltd Page 2-6

e




Enterprise IS-BASIC v3.0. - Specification

2.2.3

Copyright (c) 1985 Intelligent Software Ltd

2.2 Expressions

exline-call / exp-call / extype-
call / free-call / fp-call /
green-call / in-call / inf-call /
int-call / ip-call / joy-call /
lbound-call / len-call / log-
call / log2-call / loglO-call /
majenta-call / max-call / maxlen-
call / min-call / mod-call / ord-
call / peek-call / speek-call /
pi-call / pos-call / rad-call /
red-call / rem-call / rgb-call /
rnd-call / round-call / sec-

call / sin-call / sinh-call /
size~-call / sgn-call / sgr-call /
tan-call / tanh-call / truncate-
call / ubound-call / usr-call /
val-call / vernum-call / whita-
call / yellow-call
numeric-identifier

argument (',' argument)*

numeric-defined-function
argument-list

nun

argument value—-argument / reference-
argument

value-argument expression

referenece—-argument variable

string-expression
substring

nononn

substring ('&' substring)*
string-primary ('(' substring-
specifier ')'")* v
left-substring / right-substring
numeric-expression right-
substring? ,

':' numeric-expression?
string-constant / string-
variable / string-function-ref
string-function argument-list?
string-supplied-function /
string-defined-function

chr-call / date-call / hex-call /
inkey-call / lcase-call / ltrim-
call / rtrim-call / str-call /
time-call / ucase-call / ver-
call / word-call
string-identifier

substring-specifier
left-substring

right-substring
string-primary

string-function-ref
string-function

string-supplied-function

string-definied-function

Semantics

In a numeric-expression, the symbols '~', '*', '/', '4!
and '-' represent the operations of involution, multipli-
cation, division, addition and subtraction or negation
respectively. Unless paranthesis dictate otherwise, the
order of evaluation 1is involution, multiplication and
division, and then addition, subtraction and negation. 1In
the absence of paranthesis, the order of evaluation of
operators of equal precedence is left to right.

Page 2-7




Enterprise IS-BASIC v3.0 - Specification: 2.2 Expressions

If an underflow occurs during the evaluation of
numeric-expression, then the value
underflow will be replaced by zero.

a
which generated the

0°0 is defined to be 1.

A numeric-function-ref reprasents the value obtained as
a result of the invocation of the function, aftasr first
evaluating the arguments and substituting them for the
parametars specified in the function-definition (for
numeric-defined-functions) or the definition (for

numeric-
supplied-functions).

The operators 'AND' and 'OR' both return a truth value
of zero (for false) or minus one (for true), and assume that
a non-zero operand represents true. The evaluation of
logical-disjunctions and logical-conjunctions guarantees
that certain parts of the expression will not be evaluated
if it 1s not necessary to do so in order to determine the

ruth value of the final rssult for that logical-disjunction
or logical-conjunction.

The elements of a logical-disjunction are evaluatsd
from 1left to right until a truth value of 'true' is ob-
tained; the result of the logical~disjunction is then known
and the remainder is not evaluated. If none of the elements

of a logical-disjunction evaluata to true, then the result
is false.

The elements of a logical-conjunction are evaluatad
from left to right until a truth value of 'false' is ob-
tained; the result of the logical-conjunction is then known
and the remainder is not evaluated. If none of the elements

of a logical-conjunction evaluate to false, then the result
is true.

The operator 'NOT' reverses the truth value of its
operand ie. a non-zero operand is replaced by zero, and an
operand with a value of zero is replaced by minum one.

The operators 'BAND' and 'BOR' perform a bitwise AND
and OR respectively. Their operands must be integers in the
range -9999 to 9999 for the expected result to be

obtained.
The operators '<=' and '=<' (not greater than) arae
equivalent, as ars the operators '>=' and '=>' (not less
than). The operators '<', '=' and '>!

represent less than,
equal to and greater than respectively.

The result of a numeric-comparison is a truth value
obtained as a result of the algebraic comparison between the
two operands according to the operator.

Copyright (c) 1985 Intelligent Software Ltd Page 2-8

FamN




Enterprise IS-BASIC v3.0 -~ Specification 2.2 Expressions

The result of a string-comparison is a truth value
obtained as a result of the comparison between the two
strings according to the operator. Two strings are 'egual'
if they have the same length and contain an identical seg-
uence of characters. The relation between two strings is
determined by comparing them character-by-character for as
many characters as are contained in the shorter string
(which may be zero) or until the characters compared do not
have +the same ASCII value. In the former case (when one
string is the initial left sub-string of the other) the
shorter string is 'less than' the longer one. 1In the latter
case, the string in which the leftmost character position in
which the strings differ prescedes the corresponding charac-

ter in the other string according to its ASCII value is
'less than' the other string. '

The accuracy to which numeric-exprassions are evaluated
is 12 decimal digits internally, yielding a result of 10
decimal digits for displaying or assigning to a numeric-
variable. Numeric-supplied-functions also work to an
accuracy of 12 decimal digits internally.

A substring-specifier represents a portion of a given
string from the character position indicated by the left-
substring (if given) to the charactesr position indicated by
the right-substring (if given). The left-substring defaults
to the first character position in the string - 1, and the
right-substring defaults to the last character position in
the string + 1. Character positions are numbered incremen-
tally from 1, which represents the first charactar in the
string. A left-substring of less than 1 indicates the first
character of the string, and a right-substring of greater
than the length of the string represents the last character
of the string. If the right-substring is less than the lefi-
substring, then a null string is indicated. If no right-
substring is specified in the substring-specifier, then the
single character indicated by the left-substring is
specified.

The range of values that can be represented during the
calculation of a numeric-expression is -0.999999999999E+63
to 0.999999999999E+63. Values outside this range constitute
an overflow and result in an exception being caused. Values

between -0.1E-63 and 0.1E-63 constitute an underflow, and
are replaced by zero.

The result of a numeric-expression is rounded from 12
to 10 digits after computation, and if the rounded value
lies outside the range -0.9999999999E+63 to

0.9999999999E+63, then an overflow has occured and an
exception results. '

Copyright (c) 1985 Intelligent Software Ltd Page 2-9




Enterprise IS-BASIC v3.0 - Spééification 2.2 Expressions

The maximum length of a string during and as a result
of a string-expression is 254 characters. The characters may
have any ASCII value between 0 and 255 inclusive.

2.2.4 Examples
A
1*5
-X"Y !
27 (=X)
SIN(2*TAN(X))

If X(y) is an array with elements from 1 to 10, then:
¥>=1 AND ¥>=10 AND X (¥Y)=2
will never cause an 'out of bounds'

AS

AS & "string"
"string"(2:4)
"string"(4:2)
"string"(:4)
"string"(2:)
"string"(4)
"string"(:)
"string"(2:5)(:3)
FREDS (10:20)(X:Y)"

equivalent to -(X"Y)

exception

equivalent to "trin"

egquivalent to ""

equivalent to "stri®

equivalent to "tring"

equivalent to "i"

equivalent to "string"
equivalent to "trin"(:3) = "tri"

G b= b 4= b Pem e

2.2.5 Remarks

It should be notad that the unary negation operator '~
has the same precedence as the binary subtraction operator
'-'. This differs from many BASIC interpreters, in which
unary minus has the highest precedence of all operators.
Also the involution operator '"' is evaluatad from left to
right, which is in the oppposite direction to the convention
used by mathematicians and some pocket calculators.

Copyright (c) 1985 Intelligent Software Ltd Page 2-10



Enterprise IS-BASIC v3.0 -~ Specification 2.3 Variables

2.3 Variables

2.3.1 General description

Variables may be either simple variables, which
reference one value, or may be references to an element of a
one or more dimensional array. Variables contain data of the
appropriate type which can be modified by the program.

2.3.2 Syntax

variable = numeric-variable / string-
~variable
numeric-variable = simple-numeric-variable /

numeric-array-element
numeric-identifier
numeric-identifier subscript-part

simple-numeric-variable
numeric-array-element

subscript-part '(' subscript (',' subscript)?
] ) v

subscript index

index

numeric-expression
simple-string-variable / string-
array-element

string-identifier
string-identifier subscript-part
simple-numeric-variable / simple-
string-variable
numeric-array-element / string-
array-element

nwn

string-variable

‘simple-string-variable
string-array-element
simple-variable

array-element

2.3.3 Semantics

Simple-variables are declared implicitly through their
appearance in a program, and their life-time (ie. scope)

depends upon the history of execution of program lines, and
is dynamic.

Array-elements are declared explicitly in a dim-
statement, numeric-statement or string-statement, and
subscripts must have wvalues in the declared range, and the

number of subscripts must equal the number of declared
dimensions.

At the initiation of the execution of the program all
values associated with variables will be undefined, and an
exception will result if a variable is used in a context
where its value 1is required when no value has yet been
assigned to it during execution of the program. An exception
to this is variables declared as parameters to a program.
These are initialised as described in section 2.1.3.

Copyright (c) 1985 Intelligent Software Ltd Page 2-11




Enterprise IS-BASIC v3.0 - Spécification ‘ ~ 2.3 Variables

2.3.4 Examples

X
MY_VAR(4,5)
AST(100)

2.3.5 Remarks

Copyright (c) 1985 Intelligent Software Ltd Page 2-12



Enterprise IS-BASIC v3.0 - Specification 2.4 Identifiers

2.4 Identifiers

2.4.1 General description

Identifiers are used to name variables,

arrays,
functions and programs.

2.4.2 Syntax

identifier

]

numeric-identifier / string-
identifier

letter identifier-character*
numeric-identifier 'S$‘

numeric-identifier
string—-identifier

o

Identifiers cannot «c¢ontain more than 31 characters
(including the '$' at the end of a string-identifier).

No identifier can name more than one object or type of
object, although the numeric-identifier part of a string-
identifier may be the same as a numeric-identifier ie. two
different types of identifier may contain a sequence of

characters differing only in the final '$' of the string-
identifier.

2.4.3 Semantics

Identifiers declared (either explicitly or by their
first wuse during execution of the program) ocutside a
function-definition are global to the entire program.
Identifiers declared within a function definition are local
to each execution of the function and to any functions that
are invoked by that function, unless that function declares
an identifier of the same name. That is, the scope of
identifiers within a program is dynamic, and at any one time
during the execution of the program the identifiers which

have been declared depends upon the history of which 1lines
have been executed.

2.4.4 Examples

X

AS

MY_VAR

EL0
LAST.CHAR.USED

Copyright (c) 1985 Intelligent Software Ltd Page 2-13




Enterprise IS-BASIC v3.0 - Specification

2.4.5 Remarks

2.4 Identifiers

Any identifier may be declared which has the same name
as a statement, 1line, command or supplied-function. If an
identifier has the same name as a supplied-function, then

that supplied-functions 1is overriden
identifier. If

the declared

an identifier has the same name as a state-—

ment, line or command, then use of that statement, line or

command is not affected by the identifier.

Copyright (c) 1985 Intelligent Software Ltd

Page 2-14




Enterprise IS-BASIC v3.0 - Specification 2.5 Constants

2.5 Constants

2.5.1 General description

Constants represent either a fixed numeric value or a
fixed string of charactars. The two types of constant
(numeric-constant and string-constant) are the two primative
data types in IS—-BASIC (ie. numbers and strings).

2.5.2 Syntax

constant = numeric-constant / string-
: constant

numeric-constant = sign? numeric-rep

sign = 4V /oo

numeric-rep = mantissa exponent?

mantissa = (integer '.'?) / (integer?

fraction)?

integer digit digit*

fraction '.'" intsger?

exponent 'E' sign? integer

string-constant

quoted-string
quoted-string

'"!' quoted-string-charactar* '"!

2.5.3 Semantics

Where a sign is optional and no sign is given, a '+' is
assumed. The value of a numeric-constant is the value repre-
sented by the mantissa multiplied by ten raised to the power
of the value represented by the exponent.

Numeric-constants may have an arbitrary number of
digits, although extra digits in the mantissa will be
truncated after the tenth significant digit. The range of

- numeric-constants is -0.9999999999E+63 to 0.9999999999E+63.
If the value of a numeric-constant lies in the range
-0.1000000000E-63 to 0.1000000000E-63 exclusive, then a
value of zero is assumed (as for numeric underflow).

The value of a string-constant is the sequance of all
the characters between the initial and final '"'. Spaces are
significant and upper- and lower-case are distinct.

A single '"' may be representad in a string-constant by

The maximum length of a string-constant is limited by
the maximum length of a program-line.

Copyright (c) 1985 Intelligent Software Ltd Page 2-15

e e e e e e



Enterprise IS-BASIC v3.0 - Specification 2.5 Constants

2.5.4 Examples

1

0.1
.123
.1E34

-.1223000E-0012
"FRED n

ng. 1"
"He said, "“"IS-BASIC""."

2.5.5 Remarks

Copyright (c) 1985 Intelligent Software Ltd Page 2-16




-

Enterprise IS-BASIC v3.0 - Specification 2.6 Characters

2.6 Characters

2.6.1 General description

On input, all ASCII printing characters are valid, but
lower-case characters are converted to their upper-case
equivalents except for those appearing inside quoted-
strings, unguotad-strings or remark-strings. Control
characters (below ASCII space) are ignored. The top bit of
all characters is reset.

2.6.2 Syntax

character

'"' / quoted-string-character
quoted-string—-character

l!l/llll/lE'/l$l/l%l/l&|/llI/l(l/
l)l/|*l/|’l/l'l/|‘/l/l:l/l;l/l<l/
l=l/l>l/l?l/l@l/l[I/l\l’l]l/l“l/
l_l/l‘l/!{l/lll/l}l/l"’l/

unquoted-string-character

unquoted-string-character= ' ' / plain-string-character
plain-string-character digit / letter / '.' / '+' [/

digit IOI/lll/l2l/13l/l4l/15l/16l/l7l/
181/l9l .

letter = IAI/IBI/ICI/!DI/IEl/lFI/IGI/!Hl/
lIl/vJv/lKv/lLu/lMl/lNl/vol/lP|/
lQl/lRl/lS l/lTl/lUl/lvl/lWl/lxl/
lYl/lZl/lal/lbl/lcl/ldl/lel/lfl/
lgl/lhl/lil/ljl/lkl/lll/lml/lnl/
Iol/lpl/lql/lrl/lsv/ltl/lul/vvl/
IWI/le/lyl/lzl

identifier-character = letter / digit / ' ' / '.!

2.6.3 Semantics
2.6.4 Examples

2.6.5 Remarks

The syntax as described produces a program consisting
of no spaces exXcept in quotaed-strings, unquoted-strings and
remark-strings. Spaces may however occure anywhere in a
program-line except in the following cases:

- within a line-number

- within numeric-constants

- within identifiers

- within keywords

- within multi-character relational symbols

Copyright (c) 1985 Intelligent Software Ltd Page 2-17







Enterprise IS-BASIC v3.0 - Specification 3. ExXpressions

EXPRESSIONS AND ARITHMETIC

Chapter 2 specifies the syntax of expressions and
describes how they are evaluated. This chapter covers some

more general points about expressions and arithmetic, and
describes them in a more general way.

3.1 Numbers and Strings

All arithmetic is performed internally to 12 decimal
digits of  accuracy and for the purposes of printing and
storing in wusers variables these 12-digit numbers are
rounded to 10 digits. The exponent can be +63 with a leading
decimal point on the mantissa. Chapter 2 section 2 describes
more fully the full range of numbers.

¢ trings may be 0 to 254 characters in length, and may
) contain any character.

A fixed amount of RAM is allocted to each string, and
can be defined with the statement STRING (see the definition
of string-line in chapter 5). The default maximum length of
strings is 132 characters, and if string arrays are used, it
is particularly useful to dimension the elements to 1less
than this since the amount of memory thus saved 1is (total
number of elements) * (l32-new maximum length), which 1is
often quite significant.

3.2 Operators

The numeric operators available, in order of
precedence (highest first), are:

~ - Involution.

( 070 is 1.

‘ 0°x is 0.
x~0 is 1.
An attempt to raise a negative number to a
non—-integral power results in an error, as
does an attempt to raise zero to a negative

power.

x, / - Multiplication and division.
An attempt to divide by zero results in an
error.

+, - - Addition, subtraction and unary negation.

=, <>, %, .

<=, >, >= - Relational tests for equal, not equal, less
than, not greater than, greater than and
not less than
Alternative forms for <= and >= are =< and
=> respectively.

NOT - Logical complement.

Copyright (c) 1985 Intelligent Software Ltd Page 3-1

e s s S ERSRENEUBUES



Enterprise IS-BASIC v3.0 - Spécification

3. Expressions

BAND, AND - Bitwise and logical AND.
Logical AND will only evaluate a sub-ex-
pression as far as is necessary to deter-

mine the result.

BOR, OR - Bitwise and logical OR.

Logical OR will only evaluate a sub-ex-
pression as far as is necessary to deter-

mine the result.
Nots

same precedence for compaibility wi
BASIC.

The string operators available,
(highest first), are:

(x:y) - Slicing

Returns the string from the xth
to the yth character. If x or vy

that binary subtraction and unary minus have the
th ANSI and Minimal

in order of pracedence

character
are

missing, or if x<1 or y>LEN(string), then
the default values of the first character
and the last character are assumed.

& - Concatenation

The result must be less than 254 charactars

in length.

3.3 Examples

PRINT 1+2*37(6-2) Answer 163

PRINT 2 BOR 8 Answer 10

PRINT -2 BAND 11 Answer 10 (eguivalent to FFFE
AND (000B)

PRINT "FRED"(-3:3) Answer "FRE"

PRINT "FRED"(2:) Answer "RED"

PRINT "FRED"(:1000) Answer "FRED"

PRINT "FRED"(3) Answer "E"

PRINT "FRED"(5:3) Answer """

PRINT F$(K:K+4)(2:3) Equivalent to F$S(K:1l:K+2)

Copyright (c) 1985 Intelligent Software Ltd

Page 3-2




Enterprise IS-BASIC v3.0 - Specification 4. General Rules

GENERAL RULES OF BASIC

Program 1lines are inserted into the program via the
keyboard by typing in the line preczded by a line number in
the range 1 to 9999. Any existing lines with the same line
number are deleted. Typing in the line number alone just
deletes any existing line with the same number from the

program. Typing in the line number followed by a space
inserts a comment line.

Statements may be separated on a line with a

colon
(':").

Spaces may be put anywhere on the line except in key-

words, multiple-charactar relational signs (<= etc.) and
identifiers. Spaces must separate keywords, identifiers and
expressions.

Each 1line can have a maximum length of 250 characters
and is terminated with a carriage return (Entasr key). Chara-
cters between the 250th and the carriage return are ignored.
All lettars are uppercased except those in quoted-strings,
unquoted-strings, remark-strings and data-statements.

Copyright (c) 1985 Intelligent Software Ltd Page 4-1







N

Enterprise IS-BASIC v3.0 - Specification 5. Statements

5. STATEMENTS AND COMMANDS

This chapter defines the syntax and semantics of the
statements, lines and commands used in the definition of a
program in chapter 2.

Statements are those BASIC keywords which when executed

in a BASIC program do some specific action. They frequently
call the expression evaluation mechanism which in turn calls

the arithmetic routines which operate on constants,

variables and functions. User-defined functions can contain
any statement. ‘

Lines are those statements which require a program line
of their own, and often start or end an indented program
block. Statements by contrast can share a program line, and

are separated by a colon (':'). This is called a multi-
statement line.

Commands are those statements which can only be used
outside a program (ie. 1in ‘'immediate mode'), and are
generally concerned with the editing of programs. Many (but
not all) statements ¢an also be used in immediate mode.
Lines cannot be used in immediate mode, since they generally
require a corresponding line elsewhere in the program (for
example a line which starts a block reguires the block end
to be elsewhere in the program).

Each statement, command or line is described in four
parts:

Syntax definition
Semantics and description
- Examples

Associated keywords

Copyright (c) 1985 Intelligent Software Ltd - Page 5-1




Enterprise IS-BASIC v3.0 - Speéification 5. Statements

ALLOCATE

Syntax

allocate-statement = 'ALLOCATE' numeric-expression

Description

The allocate-statement is used to obtain RAM for use by
the BASIC programmer, and is generally used to contain
machine code which is later executed from the BASIC program.
The numeric-expression is the number of bytes required. The
start address of the memory thus obtained is not predict-
able, but can be obtained by use of the code-statement. The
amount of memory that may be allocated depends upon other

RAM usage by BASIC, but is typically 8 or 9 K. An excention (
results if there is insufficient RAM available. -

The space 1is de-allocated when the program is run
when any other action which clears the symbol table is
performed eg. when a program line is added or deleted or
when a new program is Ioaded. The memory is not de-allocatad
when another program is made the current program, so that a

program may allocate some space and put data there which may
be used by another program.

or

Examples

ALLOCATE 200
Associated keywords
CODE, HEXS, WORDS. See code-statement, hex-call, word- (

call.

ASK

Syntax

ask-statement

'ASK' exos-variable numeric-
variable

exos-variable-tex:t / exos-
variable-number
exos~variable-text = 'DEFAULT CHANNEL' / 'TIMER' /
'KEY CLICK' / 'KEY RATE' /

'KEY DELAY' / ' INTERRUPT STOPR' /
'INTERRUPT KEY' /

'INTERRUPT NET' /

'"INTERRUPT CODE' / 'TAPE SOUND' /

exos-variable =

Copyright (c) 1985 Intelligent Software Ltd Page 5-2




Enterprise IS-BASIC v3.0 - Specification 5.

AUTO

Statements

'"TAPE PROTECT' / 'TAPE LEVEL' /
'FAST SAVE' / 'SOUND STOP' /
'SOUND BUFFER' / 'SPEAKER' /
'SERIAL BAUD' / 'SERIAL FORMAT' /
'VIDEO MODE' / 'VIDEO COLOR' /
'VIDEO COLOUR' / 'VIDEO X' /
'VIDEO Y' / 'BORDER' / 'BIAS' /
'STATUS' / 'EDITOR TEXT' /
'EDITOR KEY' / 'EDITOR BUFFER' /
'REM1' / 'REM2' / 'NET CHANNEL' /.

'NET NUMBER' / 'NET MACHINE' /
'SPRITE'
exos-variable-number = numeric-expression

The exos-variable-text corresponds to the actual EXOS
variables described in the EXOS documentation.

The exos-variable-number allows EXOS variables to be
accessed by . their number rather than by name, and may be
useful for system extansions which implement: new EXOS

variables. The numeric-expression must be in the range 1 to
255.

Description

The ask-statement assigns the current value of some

system parameter contained in an EXOS variable to the
numeric-variable.

The exos-variable-number allows the EXQOS variables to
be accassed by number rather than by name, and may be useful
for system extensions which implement new EXOS variables.

The numeric-expression must evaluate to a value in the range
1 to 255.

Examples

ASK INTERRUPT CODE INT
ASK 78 A

Associated keywords

SET, TOGGLE. See set-statement, toggle-statement

Syntax

auto-command = 'AUTO' auto-option (',' auto-
option)*

Copyright (c) 1985 Intelligent Software Ltd Page 5-3




Enterprise IS-BASIC v3.0 - Specification

CALL

5. Statements

auto-option
at-number
step—-size

at-number / step-size
'AT' line-number
'STEP' integer

o

The at-number if not specified defaults to 1line 100,
and the step-size defaults to an increment of 10.

Description

The auto-command initiates automatic line number gen-
eration for convenience during the entaring of a program
from the keyboard. The line—number specified as the at-
number 1s first printed, and then the program line (with no
other line-numbers) can be entered. The step-size is then
added to the at-number, and the new line-number thus
obtained 1is printed to allow the next line to be enteread.

This process repeats until one of the following conditions
is met:

the new line-number exceeds 9999

the STOP key is prassed

- an erroneous program line is entered

a null line is entared (ie. Enter only pressed).

The at-number defaults to line 100, and the step-size
defaults to 10. Any number of at-numbers or step-sizes may

be given in the auto-options, but only the last one on the
line will have an effact.

Examples

AUTO
AUTO AT 200 STEP 5

Associated keywords

None.

Syntax

call-statement = 'CALL' numeric-expression

Copyright (c) 1985 Intelligent Software Ltd Page 5-4




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The call-statement simply evaluates the numeric-
expression and ignores the result. This is used to call
machine code subroutines which do not return a result,

and
to call numeric-defined-functions, thus allowing user-
defined functions to be used as procedures. In the latter

case, the function definition does not have to assign a
result to the function name. This would in other

circum-
stances cause an 'undefined variable' exception.

Examples

CALL FRED(A, SIZE, GS)
CALL USR(MOVE)

Associated keywords
DEF, USR. See numeric-defined-functions, def-statement,

usr-call.

CAPTURE

Syntax

capture-statement

'CAPTURE' source-channel?
destination-channel?
'FROM' channel-number
'TO' channel-number

'€' numeric-exprassion

source-channel
destination
channel-number

The numeric-expression in channel can take values in
the range 0 to 255. .

Description

The capture-statement causes character reads from the
destination-channel to come instead from the source-channel.

The capture operation will cease when either of the
following conditions occurs:

- The STOP key is pressed
— An error occurs from the destination-channel
- A subsequent capture-statement is performed with the

same destination channel but with a source channel of
255. .

Copyright (c) 1985 Intelligent Software Ltd : Page 5-5




Enterprise IS-BASIC v3.0 - Specification

CASE

Copyright (c) 1985 Intelligent Software Ltd

5. Statements

The source-channel defaults to channel 0 (EDITOR:) and
the destination-channel defaults to channel 104 (PRINTER:).

Examples

CAPTURE FROM £1 TO £105

Associated Keywords

COPY, REDIRECT. See copy—statement, rediract-statement.

Syntax

case-line
case-statement
case-list

line-number case-statement tail
'CASE' case-list

'ELSE' / (case-item (',' case-
item)*)

expression / range

nun

case-item

range (expression 'TO' expression) /
('IS' logical-operator
expression)
The

expressions appearing in a case-statement must be
of the same type as that in the corresponding select-line.

Case-lines must only appear inside a

block beginning
with a select-line and terminated by a end-s

elect-line.
Description

A case-line matches with the expression in the corres-

ponding select-line if one of the following conditions is
true:

the wvalue of the expression in the select-line is

equal to an expression in the case-item

- the value of the expression in the select-line is
greater than or egual to that of the expression

praceding 'TO' in the range, but less than or equal

to the expression following the 'TO'.

the value of the expression in the select line satis-

fies the relation indicated by a logical-operator
after 'IS'.

- the case-list contains an 'ELSE'.

Page 5-6




Enterprise IS-BASIC v3.0 - Specification 5. Statements
Examples

CASE 3,4,5

CASE IS < AS

CASE 2, 4 TO 5, 10

CASE ELSE
Associated keywords

SELECT, END SELECT. See select-line, end-select-line.

CAUSE
Syntax
cause-statement = 'CAUSE' 'EXCEPTION'? numeric-
expression
Description

The cause-statement causes an exception with the number
specified by the numeric-expression, which must be in the
range 0 to 63535. This can either be used to simulate a
system error, or to cause special errors that an exception
handler can recognise. For the latter purposes, exceptions 0
to 999 should be used since future versions of BASIC will

not use these, but may use higher numbered exception
numbers.

Examples

CAUSE 52

Associated keywords

WHEN, HANDLER, EXTYPE, EXLINE. See when-line, handler-
line, extype-call, exline-call.

CHAIN
Syntax

chain-statement = 'CHAIN' program-designator
argument-list?

Copyright (c) 1985 Intelligent Software Ltd Page 5-7




Enterprise IS-BASIC v3.0 - Specification ' " 5. Statements

program—-designator = string-primary / numeric-
expression

Description

The chain-statement 1is used to transfer execution to
another program that is currently in memory, possibly pass-
ing parameters by value to the chained to program.

If the program-designator is a numeric-expression, then

the value of the expression is the number of the program in
memory.

Note that the alternative program-designator is a
string-primary. (A full string-expression could have a left
paranthesis at the start of a string slice operation. This
causes an abigquity with a paramter-list.) The string-primary
must be equal to the name of the program given as a quoted-

string in a program-line. Both strings are uppercased before
being comparad.

The total number of bytes taken up by the parameters
must not exceed 256 bytes, and are passed as described in
section 2.1 . Numerical parameters take up 9 bvtas each, and
strings take up the length of the string + 1.

Examples

CIAIN "END" (CHAN, NAMES)
CHAIN 4

Associated keywords

RUN, EDIT. See run-statement, edit-command, program-

name.
CLEAR
Syntax
clear-statement = 'CLEAR' (channel ':')? (clear-
item (';' clear-item)*)?
clear-item = '"NETWORK' / 'FKEYS' / 'FONT' /

'SCREEN' / 'TEXT' / 'GRAPHICS' /
'SOUND' / 'ENVELOPE' / ('QUEUE'
numeric-expression)

Copyright (c) 1985 Intelligent Software Ltd Page 5-8

TN




Enterprise IS-BASIC v3.0 - Specification 5. Statements

If the channel is given in the cleaf-statement, then

either a clear-item 1is not given or the clear-item is
'"'NETWORK'.

Description

The clear-statement clears a certain channel or machine
feature. If the channel is specified, then a control 2 is
sent down the channel. Otherwise, the action taken depends
upon the clear-item, as follows:

- NETWORK : the network buffer is cleared. A channel
number must be specified.

- FKEYS : the function keys on channel 105 are reset
to BASIC's default strings.

- FONT : resets the character font to its initial
characters. Channel 102 must be open.

— SCREEN : sends a control Z to the editor (channel
0) and graphics page (101) if open.

- TEXT : sends a control Z to the text page (channel
2).

- SOUND : sends a control Z to the sound channel

(103) to flush all sound gueues.
- ENVELOPE: sends a control X to the sound channel
(103) to flush all envelope storage.

- QUEUE : sends an Esc Z numeric-expression to the
sound channel (103) to clear the sound
queue specified by the numeric-expression,
which must be in the range 0 to 3.

Examples
CLEAR £10:

CLEAR SCREEN
CLEAR QUEUE 2

Associated keywords

None.

CLOSE

sSyntax

close~-statement = 'CLOSE' channel-number




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The close-statement closes the EXOS channel specified
by the channel-number.

Normally, the ':!' is given aftar a channel, but the

end-of-line option is useful when nothing else is to follow
on the line.

Examples

CLOSE £3

Associated keywords

OPEN. See open-statement.

CODE
Syntax
code-statement = 'CODE' numeric-variable? '=!'
: string-expression
Description

The code-statement puts each byte in the string-
expression into the next free consecutive locations of
memory praviously allocated by an allocate-statement. The
numeric-variable, if given, has assigned to it the address
of the first byte of the memory area. The string-expression
may have no length, in which case the number of bytes free

does not change, but the numeric-variable still points to
the next fres byte.

Examples

CODE END=HEX$(Cl, D1, El, C9)
Associated keywords

ALLOCATE, HEXS, WORDS. Se= allocate-statement, hex-
call, word-call. .

Copyright (c) 1985 Intelligent Software Ltd Page 5-10




Entarprise IS-BASIC v3.0 - Specification : 5.

Statements

CONTINUE

corY

Syntax

continue-line = 'CONTINUE"

Description

The continue-line has two different actions, the action
depending upon whether it is used in 'immediate mode' or in
a program.

When used in immediate mode, the continue-line allows a
program whose execution has previously been stopped to be
continued again. The program must have been stopped as a
result of a stop-statement or a press of the STOP key. The
program cannot be continued if an error has occured or the
program has been edited since being stopped.

When used in a program, the continue-line is used as an
exit from an exception handler. Execution continues at the
line after the line that caused the exception.

Examples
CONTINUE
2040 IF EXTYPE = 100 THEN

2050 CONTINUE
2060 END IF

Associated keywords

RETRY, HANDLER, EXIT HANDLER, END HANDLER, STOP. See
retry-line, handler-line, exit-handler-statement, end-—
handler-statement, stop-statement.

Syntax

copy-statement = 'COPY' source-channel?
destination-channel?

Copyright (c) 1985 Intelligent Software Ltd Page 5-11



Enterprise IS-BASIC v3.0 - Spécification 5. Statements

Description
The copy-statement reads characters from the source-

channel and writes them to the destination-channel. The copy

operation will cease when one of the following conditions is
met:

- the STOP key is pressed
- an error occurs from either channel

- the end of file is reached on the source-channel

The source-channel defaults to channel 0 (EDITOR:) and
the destination-channel defaults to channel 104 (PRINTER:).

Examples

COPY FROM £10 TO £20

Associated keywords

CAPTURE, REDIRECT. See capture-cstatement, redirsct-
statement.

DATA

Syntax

data-statement
data-list
datum
unguoted-string

'DATA' data-list

datum (',' datum)*

~constant / unquoted-string
plain-string-character / (plain-
string-character unquoted-string-
charactsr* plain-string-
character)

nnnn

Note that the definition of an unquotad-string
indicates that leading and trailing spaces are not
ignificant.

Description

The data-statement definies a sequence of data which
can later be read into variables. Data-statements may appear
anywhere in- a program, but the totality of the data-
statements is considered to define one sequence of data. The

first data-statement defines +the first data in the data
sequence and so on.

Copyright (c) 1985 Intelligent Software Ltd Page 5-12




Enterprise IS-BASIC v3.0 - Specification ~ 5. Statements

The execution of a data—-statement results in execution

continuing with the next line in the program, with no other
effect.

Examples

DATA ~3E-26, he said "IS-BASIC", "he said, ""IS-
BAS IC awnn

Assoclated keywords

READ, RESTORE. See rsad-statement, restore-statament.

DATE
Syntax
date-statement = 'DATE' string—expreséion
Description
The date-statement allows the internal date counter to
be set. The string—expression must evaluate to a string
containing 8 <characters 1in the format specified by ANSI
Standard X3.30, which was "YYYYMMDD". : ‘
Examples
DATE "19840521" ! 21st May 1984
Associated keywords
DATES. See date-call.
DEF
Syntax
def-line

line—-number def-statement tail
single-line-def / block-def
single-line-numeric-def / single-
line-string—-def

def-statement
single~line-def

single-line-numeric-def = numeric-block-def '=' numeric-
expression

single-line-string-def = string-block-def ‘'=' string-
expression

Copyright (c) 1985 Intelligent Software Ltd Page 5-13



Enterprise IS-BASIC v3.0 - Specification 5.

Statements

block-def = numeric-block-def / string-block-
def '

numeric-block-def = 'DEF' numeric-identifier
parameter-list?

string-block-def = 'DEF' string-identifier
parameter-list?

parameter-list = '(' parameter (',' parameter)*
l)'

parameter = value-parametar / reference-
parameter

value-parameter identifier

reference-parameter 'REF' identifier

Description

The def-statement allows a user-defined function to be
defined. This can either evaluate a simple expression in the
case of a singe-line-def, or can execute many program lines
in the case of a block-def. In the latter ¢ase, the block of
program-lines must be terminated with an end-def line,

When the function is called, the number and type of the
arguments in the argument-list on the calling line must
agree with the number and type of arguments on the def-line.

A value-parameter indicates that an expression will be
evaluatad as the argument, and assigned to the value-
parameter, which then becomes an ordinary variable whose
name and value are local to the function.

A reference-parameter indicates that the referance—
parametsr refers to the actual variable given in the
argument-list, and then becomes an ordinary variable whose
name only is local to the function. Thus if its value is
changed by the function, then the value of the variable in
the argument-list is also changed.

The execution of a single-line~def results in execution
continuing with the next program line, with no other effect.
The execution of a block-def results in execution continuing

with the line immediately following the corresponding end-
def-line, with no other effect.

The function named in a def-line can be accessed any-
where in the program, regardless of whether or not the def-
line appears before or after the defined-function that ref-
erences it. Functions named in a def-line are global to the
whole program and can be accessed anywhere regardless of

whether the def-line appeared within another function defin- .
ition or not.

Copyright (c) 1985 Intelligent Software Ltd Page 5-14




Enterprise IS-BASIC v3.0 - Specification

5. Statements

In the case of a block-def, the result is returned by
assigning a value to the name of the function. This
assignment may be performed more than once (in which

case
the last value assigned will be returned).

The name of the function may also be wusad in a
definied-function reference within that - function, thus

allowing recursive functions to be written. The number of
recursions allowed depends upon the context in which the

function 1is called and the number of arguments passed, but
typically approaches 60.

If a block-def is intended to be the the object of a
call-statement, then no result need be assigned to the name
of the function, thus providing procedural capabilities. The
function may not then be used as a function

returning a
result since an exception will result.

Examples

DEF X(ANGLE) = SIN(ANGLE)*700

10 DEF XY(ANGLE, REF FUNC)
20 XY¥=FUNC(ANGLE)*700
30 END DEF

Associated keywords

END DEF, CALL. See end-def-line,

call-statement,
definied-function.

DELETE

Syntax

delete-command

f]
'DELETE' segment-list?
segment-list

segment-specifier (',' segment-
specifier)*

defined-function / handler /
line-range

first-line / last-line
line-specifier last-line?

('-' / 'T0') line-specifier?
'FIRST' / 'LAST' / line-number

segment-specifier

line-range
first-line
last-line
line-specifier

A segment-specifier specifies a group of lines that are
to be used.

If the segment-list is not given, then the whole
program is used.

Copyright (c) 1985 Intelligent Software Ltd Page 5-15




Enterprise IS-BASIC v3.0 - Specification - 5. Statements

If the segment-specifier is a defined-function, then
the group of 1lines refarenced are from the def-line or

handler-line to the corresponding end-def-line or end-
handler-line respectively.

If the line-specifier is '"FIRST', then the line number
of the first line of the program will be used. If the line-

specifier is 'LAST', then the last line of the program will
be used.

If the line-range does not include a first-line, then
the first line of the range is assumed to be the first 1line
of the program. Similarly, if the last-line does not include

a line-specifier, then the 1last line of the program is
assumed.

Description

The delete-command can be used to delete a section of
the program Although just typing in just the line-number
alone will delete that line, the delete-command is
convenient for deleting mors than one line.

If no segment-list is given, then the whole program
will be deleted, which is ejJuivalent to the new-command.

Examples

DELETE FIRST TO 100
DELETE -10Q0

DELETE 400-

DELETE 300 TO 400

Associated keywords

LIST, NEW. See list-command, new-command.

DIM

Syntax

dim-statement

'DIM' dimension-list
dimension-list

array-declaration (',' array-
declaration)*

(numeric-array / string-array)
bounds _
numeric—~identifier
string-identifier

'(' bounds-range (',' bounds-
range)? ')'

array-declaration

numeric-array
string-array
bounds

Copyright (c) 1985 Intelligent Software Ltd Page 5-16




Enterprise IS-BASIC v3.0 - Specification 5. Statements

bounds -range
lower-bound
bound

lower-bound? bound
bound 'TO'
numeric-expression

If no lower-bound is specified in a bounds-range, then
a value of zero will be assumed. If the numeric-expression
in the bound evaluates to a non-integral value, then it will
be truncated to the nearest integer towards zero.

Description

The ‘dim-statement declares the named arrays to be
either one-~ or two-dimensional, depending upon whether one
or two bounds-ranges ars specified. The maximum subscript

value 1is specified optionally with the minimum subscript
value the array will have.

The maximum length of each element of a string array

declared with a dim-statament is 132 characters. This may be

changed by using a string-statement instesad of a dim-
statement.

Examples

DIM A(2 TO 10), FREDS(500)

Associated keywords

NUMERIC, STRING. See numeric-statement, string-

statement.
DISPLAY

Syntax

display-statement = 'DISPLAY' (text-display-specifier
/ graphics-display-specifier /
general-display-specifier)

text-display-specifier = 'TEXT'

graphics-display-specifier = 'GRAPHICS'

general-display-specifier= (channel ':')? display-argument*

display-argument = ('AT' / 'TO' / 'FROM') numeric-
expression

Description

The display-statement causes a video page to be
displayed.

Copyright (c) 1985 Intelligent Software Ltd Page 5-17

e e T e T T e



Enterprise IS-BASIC v3.0 - Specification - 5. Statements

If the display-statement has a text-display-specifier,
then 24 lines of text page and editor buffer are displayed.
If the graphics channel is open, then it will not be closed
unless necessary. If the currently open text page is to

small, then it will be closed and rs-opened with the correct
size.

IE the display-statement has a graphics-display-
specifier, then 20 lines of graphics and 4 lines of taxt and
editor buffer are displayed. If a larger text page is open,
then this will not be changed wunless necessary. If a
graphics page is not open, then one will be opened.

If the display-statement has a general-display-
specifier, then the channel will be displayed. The default
channel displayed is the graphics channel.

The last 'AT', 'TO0' and 'FROM' values given 1in a
display-argument determine which part of the video page is
displayed, and whers on the screen it is displayed. The
default values are 1, 24 and 1 respectively. 'AT' determines
where on the screen the portion of video page 1is to be
displayed. 'FROM' specifies the first line of the video page
to display, and 'TO' specifies the last line. If the 'TO'
value is zero, then the border colour will be displayed for
the number of lines specified by the 'TO' par%.

Examples

DISPLAY £2:AT 10 FROM 10 TO 24.

Associated keywords

GRAPHICS, TEXT. See graphics-statement, text-statement.

DO

Syntax

do-line
do-statement
exit-condition

line—-number do-statement tail
'DO’ exit-condition?

('WHILE' / 'UNTIL') numeric-
expression

nunn

An exit-condition is said to be 'true' if the numeric-
expression following the 'WHILE' is zero, or if the numeric-
expression following the 'UNTIL' is non-zero.

Copyright (c) 1985 Intelligent Software Ltd Page 5-18




Enterprise IS-BASIC v3.0 - Specification 5.

EDIT

Statements

Description

The do-statement introduces a DO...LOOP, which is a
loop repeated until or while a condition is true.

When a do-line is executed, the exit-condition (if
given) 1is evaluated, and if false the next program line is
executed. If true, then execution continues with the 1line

immediately following the associated loop-line. If no exit-

condition 1is given, then a value of always true will be
assumed.

Examples

10 DO UNTIL X>10

Associated keywords

LOOP. See loop-line.

Syntax

edit-command = '"EDIT' program-designator

Description

The chain-command makes the program specified by the
program-designator to become the current program, and the
subject of subsequent program editing and execution
commands. The program specified by the program—-designator
must currently reside in memory.

Examples

EDIT 10
EDIT "MY PROG"

Associated keywords:

CHAIN, PROGRAM. See chain-statement, program-line.

Copyright (c) 1985 Intelligent Software Ltd ~ Page 5-19




Enterprise IS-BASIC v3.0 - Specification } - 5.

Statements
ELSE
Syntax
else~line = line—number 'ELSE' tail
Description
The else-line is used in conjunction with the if-line
and specifies a block of lines to be executed if the
condition in the associated if-line is false. The block is
terminated by an else-if-line or end-if-line.
Examples
ELSE
Associated keywords
IF, ELSE IF, END IF. See if-line, else-if-line, end-if-
line.
ELSE IF
Syntax
else-if-line = line-number 'ELSE IF' numeric-
expression tail
Description

The else-if-line allows a further conditions to be (
tested after a condition on an if-line has become false. Any
number of else-if-lines may appear between the if-line and
the associated end-if-line. The same effect as an else-if-
line may be achieved by nesting if-lines, but an else-if-
line 1is generally more compact and readable. Using nested
if-lines makes a program listing rather unwieldly, particu-
larly when lines are indented to show the program structure.

If the numeric-expression evaluates to non-zero, then
execution continues with the next line in the program. If it
evaluates to zero, then control passes to the next if-
statement terminator. This may be another else-if-line, and
else-line or an end-if-line.

Copyright (c) 1985 Intelligent Software Ltd Page 5-20




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Examples

ELSE IF A<10

Associated keywords

ELSE, IF, END IF. Sea else-line, if-line, end-if-line.

END
Syntax
end-line = line-number 'END' tail
Description
Terminates execution of the program, and returns to
immediate mode. The program cannot be restarted the a
continue-line (use the stop-statement to allow this).
Examples
10 END
Associated keywords
STOP. See stop—-statement.
END DEF
Syntax
end-def-line = line-number 'END DEF' tail
Description

The end-def-line terminates a function definition, and
must be matched with an associated def-line. An esception 1is
caused 1if an end-def-line is executed if the function was

invoked from an expression and no value has been assigned to
the function. :

=~

When an end-def-line is executed, control is passed
back to the line or expression that invoked the function.
All wvariables declared or used for the first time in the
function are thrown away.

Copyright (c) 1985 Intelligent Software Ltd Page 5-21




Enterprise IS-BASIC v3.0 - Specification " 5. Statements

Examples

END DEF

Associated keywords

DEF. See def-line.

HANDLER

Syntax

end-handler-line = line-number 'END HANDLER' tail

Description

The end-handler-line is used to terminate an exception

handler, and must always be matched by an associated
handler-line.

When an exception handler is executed, the end-handler-
line 1is not necessarily executed, since it is only one of
four ways of exiting the exception handler. If it is exe-
cuted, then execution continues at the 1line immediately
following the end-when-line that terminates the when block
in which the exception occured. All local variables created
during execution of the handler are thrown away, together
with those defined since the when-line associated with the
end-when-line was executsd. Also all gosub-statements, do-
lines, for-lines, and function calls made active since exe-
cution of the when-line are abandoned. The effect is thus as
though the when block was never executed.

Examples

END HANDLER

Associated keywords

HANDLER, WHEN, END WHEN, EXIT HANDLER, CONTINUE, RETRY.
See handler-line, when-line, end-when-line, exit-handler-
statement, continue-line, retry-line.

Copyright (c) 1985 Intelligent Software Ltd Page 5-22



Enterprise IS-BASIC v3.0 - Specification 5.

Statements
END IF
Syntax
end-if-line = line-number 'END IF' tail
Description

The end-if-line marks the end of a block of lines
following an if-line, else-line or else-if-line, and must
have an associated if-line. If executed, execution continues
with the next program line with no other effect.

Examples

END IF

Associated keywords

ELSE, ELSE IF, IF. See else-line, else-if-line, if-
line.

END SELECT

Syntax

end-select-line = line—-number 'END SELECT‘ tail

Description

The end-select-line marks the end of a block of lines

following a select-line or case-line, and must be matched by

-an associated select-line. When executed, an exception
occurs if no case-line has been selected.

Examples

END SELECT

Associated keywords

SELECT, CASE. See select-line, case-line.

Copyright (c) 1985 Intelligent Software Ltd Page 5-23




Enterprise IS-BASIC v3.0 - Specification ° 5. Statements

END WHEN

Syntax

end-when-line = line-number 'END WHEN' tail

Description
The end-when-line marks the end of a block of program
lines following a when-line, and must be matched by an

assoclataed when-line. 1If executed, execution passes to the
next line with no further effect.

The line aftsr an end-when-line 1isg where execution

continues if an end-handler-line is executed in an exceaption
handler.

Examples

END WHEN

Associated keywords

WHEN, END HANDLER. Ses when-line, end-handler-line.

ENVELOPE

Syntax

envelope-statement 'ENVELOPE' (channel ':')?

'NUMBER' numeric-expression
envelope release?
envelope phase*
phase ';' pitch-change ',' left-volume-
' change ',! right-volume-change
',' envelope-duration
numeric-expression
numeric-expression
numeric-expression
numeric-expression
';RELEASE ' envelope

pitch-change
left-volume-change
right-volume-change
envelope-duration
release

Description

The envelope-statement defines an envelope to be later
used with the sound-statement.

Copyright (c) 1985 Intelligent Software Ltd Page 5-24




Enterprise IS-BASIC v3.0 - Specification 5.

EXIT

Statements

The numeric-expression following the 'NUMBER' must be
in the range 0 to 254, and allows the envelope being
defined to be referenced in a subsequent socund-statement.

The pitch-change specifies the change in pitch over the
period of the

phase in which it appears in semitones. Fractional semitones
are allowed.

The left-volume-change and the right-volume-change
specify the change in volume for the left sound channel and
the right sound channel respectively over the period of the
phase in which they appear. They must be in the range -63 to
63 to have an effect, and represent a proportion of the
overall maximum volume specified in a subsequent sound-
statement. Any values outside the above range will be
truncated to maximum of 63 or minimum or -63.

The envelope-duation specifies the length of the phase
in which it appears in 1/50ths of a second.

The optional release specified an envelope to be used
when the main envelope terminatss and when the duration

specified in the sound-statement has expired and there are
no other sounds following in the gqueue.

Examples

ENVELOPE NUMBER 1l; 10,4,5,200; 1000,40,40,503; RELEASE;
_lo '—4 ’—5 ’—200
Associated keywords

SQUND. See sound~statsment.

DEF

Syntax

exit-def-statement = 'EXIT DEF'

Description

The exit-def-statement is used to prematurely exit the
mode recently invoked defined-function. An exception occurs
if the function was invoked as a result of evaluating an
expression (ie. if not from a call-statement) and no value
has been assigned to the function name.

' Copyright (c) 1985 Intelligent Software Ltd Page 5-25

e e e e e e m———— T D



Enterprise IS-BASIC v3.0 - Specification

EXIT

EXIT

5. Statements

The exit-def-statement can be used within blocks intro-
duced by for-lines and do-lines, if-lines, and select-lines.

Examples

EXIT DEF
IF A=B THEN EXIT DEF

Associated keywords

DEF, END DEF. See def-line, end-def-line.

DO

Syntax

exit-do-statement = 'EXIT DO!

Description

The exit-do-statement is used anywhere in a block of
program lines introduced by a do-line, and is used to

prematurely exit the loop, which must be the inner-most
loop.

Examples

EXIT DO
IF A=3 THEN EXIT DO

Associated keywords

DO, LOOP. See do-line, loop-line.

FOR

Syntax

exit-for-statement = 'EXTIT FOR'

Copyright (c) 1985 Intelligent Software Ltd Page 5-26




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The exit-for-statement is used anywhere in a block of
program lines introduced by a for-line, and 1is wused to

prematurely exit the loop, which must be the inner-most
loop.

Examples

EXIT FOR

IF A=B THEN EXIT FOR
Associated keywords

FOR, NEXT. See for-line, next-line.

EXIT HANDLER

Syntax

exit-handler-statement = 'EXIT HANDLER'

Description

The exit-handler-statement 1is used in an exception
handler when that exception handler is not interested in or
cannot handler the exception. The exit-handler-statement
then passes the exception to the next outar exception
handler (or the system error handler if none) ie. the effect
is as though the exception handler (and the associatzd when-
line) with the exit-handler-statement in did not exist.

The exit-handler-statement can be used within blocks

introduced by for-lines and do-lines, if-lines, and select-
lines.

Examples

EXIT HANDLER
IF A=B THEN EXIT HANDLER

Associated keywords

END HANDLER, CONTINUE, RETRY. See end-handler-line,
continue-line, retry-line.

Copyright (c) 1985 Intelligent Software Ltd Page 5-27



Enter

EXT

FETCH

Copyr

prise IS-BASIC v3.0 - Specification - 5. Statements

Syntax

ext-statement = 'EXT' string-expression

Description

The ext-statement is used to pass the string-exprassion
around all the ROMs in the system via EXOS to perform some

'service' or to start up a new applications program to
replace BASIC. :

In 'immediate mode' a line beginning with a colon ':°

causes the remainder of the line to be passed to EXOS in

a
similar manner.

Examples

EXT "DIR"
:HELP

Associated keywords

None.
Syntax
fetch-statement = 'FETCH' channel (':' record)?
record = numeric-expression
Description

The fetch-statement provides a way of randomly reading
a record from a file which was created using the write-
statement and record-statement. If the record 1is not

specified, then the default of the last record read or
written + 1 is used.

ight (c¢) 1985 Intelligent Software Ltd Page 5-28

.




Enterprise IS-BASIC v3.0 - Specification 5.

Statements

Examples

FETCH £10
FETCH £10: 47

Associated keywords

RECORD, WRITE. Ses r=zcord-statament, writa-stat=ament.

FLUSH

FOR

Syntax

flush-statement = 'FLUSH' channel ':'?

Description

The flush statament causes a buffsr on the specified

channel to be written ocut. This is usually used to cause
bufferad data to be sent down the network.

Examples

FLUSH £10

Associated keywords

CLEAR. See clear-statement.

Syntax

for-line
for-statement

line-number for-statement tail
'FOR' control-variable '='
initial-value 'TO' limit ('STEP'
increment)?
simple-numeric-variable
numeric-expression
numeric-expression
numeric-expression

control-variable
initial-value
limit

increment

Copyright (c) 1985 Intelligent Software Ltd Page 5-29

R NS D P e s



Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The for-line introduces a FOR...NEXT loop, which is a
block of program lines that are executed a specified number
of times with the value of the control-variable incrementead

on each execution of the loop. The for-line must be matched
by an associated next-line.

When a for-line is executed, the initial-value is assi-
gned to the control variable. A test to see if the value of
the control-variable has exceeded the 1limit is then
performed as for the next-line, and if the test is not true
execution continues with the next program line. If the tast

is true, then execution continues with the line immediately
following the associated next-line.

If the 'STEP' and incresment are omittad, then the
increment defaults to one.

Examples

FOR A=1 TO B STEP 2*C

Associated keywords

NEXT. See next-line.

Syntax

get-statement = 'GET' (channel ':') string-
variable

Description

The get-statement allows a character to be read from
the channel (default 105 (KEYBOARD:) if not given) with an
immediate return if no character is ready.

The character read is assigned to the string-variable.
If no character was ready to be read then the string
assigned to the string-variable has zero length.

Copyright (c) 1985 Intelligent Software Ltd Page 5-30




Enterprise IS-BASIC v3.0 - Specification 5.

Statements

Examples

GET AS

GET £10:CHARS
Associated keywords

INKEYS. See inkey-call/

GOSUB

GOTO

Syntax

gosub-statement = 'GOSUB' line-number

Description

The gosub-statament when executad causes execution to
be continued at the line-number specified. When a return-
statement is subsegquently executed, execution continues with

the program-line immediately following the one after the
gosub-statament.

Care should be taken when mixing gosub-stataments with
definied-function invocations.

Examples

GOSUB 10

Associated keywords

GOTO, RETURN. Ses goto-statement, return-statement.

Syntax

goto-statement = 'GOTO' line-number

Description

The goto-statament when executed causes execution to
continue at the specified line-number.

Copyright (c) 1985 Intelligent Software Ltd Page 5-31



Enterprise IS-BASIC v3.0 - Spédification 5. Statements

Care should be excersised when using goto with any

blocks (FOR...NEXT, DO...LOQCP, DEF...END DEF, IF...THEN
etc.)

Examples

GOTO 10

Associated keywords

GOSUB. See gosub-statement.

GRAPHICS

Syntax

graphics-statement 'GRAPHICS' ('ATTRIBUTE' /

(resolution? colour-mode?) )?
'HIRES' / 'LORES'
numeric-expression

rasolution
colour-mode

t.n

The colour-mode must evaluate to a value of 2, 4, 16 or
256.

Description

The graphics-statement sets up and displays 4 lines of
text and 20 lines of graphics, which is either an attribute
graphics page or the specified resolution and colour-mode.

If 'ATTRIBUTE' is not specified and no resolution is
given, then it defaults to the last resolution wused, or
'"HIRES' initially. If 'ATTRIBUTE' is not specified and no

colour-mode 1is given, then it defaults to the last colour-
mode used, or 4 initially.

Examples
GRAPHICS
GRAPHICS HIRES 2

GRAPHICS LORES 256
GRAPHICS ATTRIBUTE

Associated keywords

DISPLAY, TEXT. See display-statement, text-statement.

Copyright (c) 1985 Intelligent Software Ltd Page 5-32

N




—_

Enterprise IS-BASIC v3.0 - Specification 5.

Statements

HANDLER
Syntax
handler-line = 'HANDLER' handler
handler = pumeric-identifier
Description

IF

The handler-line introduces a block of program 1lines

that are used as an exception handler. It must be matched by
an associated end-handler-line.

After a when-line that references the handler-line (via
the numeric—identifier) has been executed, any exceptions.
that occur cause the line immediat2ly following the handler-
line, and subseguent lines, to be executed.

The handler may be exitad in one of four ways:

a continue-line

an exit~handler-statement
a retry-line

an end-handler-line

Examples

HANDLER IO_ERROR

Associated keywords

END HANDLER, EXIT HANDLER, RETRY, CONTINUE, WHEN. See

end-handler-line, exit-handler~statement, retry-line,
continue-line, when-line.

Syntax

if-line

line-number if-then-statement
tail .
if-then-statement (statements /
line-number)

if-statement

Copyright (c) 1985 Intelligent Software Ltd Page 5-33




Enterprise IS-BASIC v3.0 - Specification 5. Statements

if-then-statement = 'IF' numeric-expression 'THEN'

The numeric-expression 1is said to be 'false’ if it
evaluates to a value of zero; otherwise it is said to be
true.

Descrition

The if-statement provides the conditional execution of
one or more statements. The if-line allows the conditional
execution of zero or more program-lines as a block, with the
option of an else-line and any numer of else-if-lines, and
must be matched by an associated end-if-line.

When an if-statement is executad, the next 1line is

executad if the numeric-exprassion in the if-then-statement
evaluatas to false. Otherwise, if a line-number is given,
execution continues at the specified line-number, or if
Statements are specified then execution continues with the

first statement in the statements..This could be another if-—
statament,

When an if-line is executad, the next line is executad
if the numeric-expression evaluates to true. If it is false,
then execution continues with the next line that is either

EN

an else-if-line, an else-line or an end-if-line.

Examples

IF A=B THEN 100
IF A=3 THEN GRAPHICS: GOTO 100

IF¥ A=B THEN

PRINT "A=B"
ELSE IF C=D THEN
PRINT "C=D"

ELSE
PRINT "Sorry"
END IF

Associated keywords

ELSE, ELSE IF, END IF. Ses else-line,

else-if-line,
end-if-line.

. Copyright (c) 1985 Intelligent Software Ltd Page 5-34




Enterprise IS-BASIC v3.0 - Specification 5. Statements

IMAGE

Syntax

image-line line-number 'IMAGE' ':' format-

string end-of-line
literal-string (format-item
literal-string)*
literal-itam*

format-string

litaral-string

literal-item letter / digit / '*' / v /
l=l/l£|/l(l/l)l/l;l/
'/'/l l/ll

format-item

(justifier? floating-character*
(i-format-item / f-format-item /
e—-format-item)) / justifier

te / L

sign / '$"

digit-place digit-place* (',°
digit-place digit-place*)*

1% 1 / e / l%l

(*.' 'g! tgrx) / (i-format-itam
l.l IEI*)

(i-format-item / f-format-itam)
1~ =1 T~ 1~ 1 %

justifier
floating-characzter
i-format-item

digit-place
f-format-itam

e—format-itam

Any 1leading spaces immediately after the colon in the
image-line are considersd to be part of the format-string.
The format-string in an image-line ends with the end-of-line

ie. trailing spaces are considered to be part of the format-
string.

All digit-places in an i-format-item ars significant,
but if one or more digit-places is '*' or '%', then the last

'*' or '%' determines the type that the digit-places are
considered to be.

Description

Format-string allows the formatted printing of numbers
and strings. The maximum length of the format-string is 127
characters. The effect of the characters appearing in the
format-string have the following effect: :

Copyright (c) 1985 Intelligent Software Ltd Page 5-35




Enterprise IS-BASIC v3.0 - Specification - 5. Statements

Numeric:
< £ > - Causes a digit, leading space or trailing zero

to be printed.

* - Causes a digit or leading charactar to be
printed. Sets the leading character to '*',

% - Causes a digit or leading character to be
printed. Sets the leading character to '0'.

. - Ends the printing of the integer part of a
number and prints a ','.

- - Prints a floating '-' in front of the number
if it is negative, otherwise prints a space.

+ - Prints a floating '+' or '-' sign in front of

the number, depending upon whether it is pos i-
tive or negative repectively.
$ - Prints a floating '$' in front of the number.
- - Prints a charactar from the exponent. Nots
that there must be at least four.

’ - Prints a comma in the number.
String:
£ % * - Prints a character from the string.
< > =

Prints a character from the string, and causes
the string to be left- or right-justified
respectively in the field defined by £, % or
*. If not given, then the string is centered
(to the nearest charactasr position) within the
string. Begins a new format-item.

All - other characters in the format-string are printed
as literals, and separate format-items.

If there are insufficient charactars in the format-item
to print the item, then an exception is caused.

Examples
IMAGE :£££.££8°°"7

See print-statement.

Associated keywords

PRINT. See print-statement.

Copyright (c) 1985 Intelligent Software Ltd Page 5-36




Enterprise IS-BASIC v3.0 - Specification 5. Statements

INFO
Syntax
info-command = 'INFOQ'
Descrition

The info-command prints on the screen information
aescribing the current memory usage. 7The tormat of the
printout 1s:

<numbker or wvytes .n system>

<number of bytes not working>

<number of bytes unused in system>

, <program number> <bytes used> <first line>
( {program number> <bytes used> <first line>

The number of bytes in the system is the number of
bytes that are intended to work, 1ie. (number of bytes
working) + (number of bytss not working).

The line containing the number of bytss not working 1is
only printed if this number is non-zero. The number is in
multiples of 16K.

The number of bytes unused is the number of bytes that
are not used by EX0S, BASIC or the user's program. Nota that
this 1is does not imply that the current program could grow
this big; the FREE function should be used to obtain this

( number.

The rest of the printout gives a summary of the
programs in memory. Each program number that has a program
assigned to it is printed, followed immediately by a '*'
character if it is the current program. The number of bytes
occupied by the program is then printed, followed by the
first 1line of the program. Since this will usually be a
program-name-line or a comment, an 'index' of all the
programs in memory is printed.

Program zero, being a special case, will always appear
on the above printout. If no program is assigned to it, zero

is printed for the number of bytes used, and no program line
is printed.

Copyright (c) 1985 Intelligent Software Ltd Page 5-37




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Note that no information about the programs in memory
is printed if there are no programs at all.

Examples

INFO

Associated keywords

FREE. See free-call.

INPUT
Syntax
input-statement = 'INPUT' input-control? variable-
list
input-control = input-conrol-itam (',' input-

control-item)* ':!

channel / prompt-specifier /
missing-recovery / cursor-at
'"PROMPT' string-expression
'IF MISSING' recovery-action
exit-def-statament / exit-do-
statement / exit-for-statement /
line-number

'AT' numeric-expression ',
numeric-expression

variable (',' variable')

1o 1

data-list end-of-line

input-control-itam

prompt-specifier
missing-recovery
racovery-action

cursor—-at

variable-list
input-prompt
input-reply

The cursor-at positions the cursor at the co-ordinates
specified by the numeric-expressions in the cursor-at. The
first numeric-expression specifies the row, and the second
numeric-expression specifies the column. The first row or
column is numberad 1. A row or column of zero indicates that
the current cursor row or column is to be used.

Description

The input-statement is used to input data extarnal to

the program (ie. from a channel) into numeric-variables or
string-variables.

If no channel is given in the input-control, then the
default channel of 0 (EDITOR:) is used.

Copyright (c) 1985 Intelligent Software Ltd Page 5-38




Enterprise IS-BASIC v3.0 - Specification 5.

LET

Statements

If a prompt-specifier is not given, then the default
input-prompt is used, Otherwise, the string-expression in
the prompt-specifier is evaluated and used as a prompt.

After receiving the input-reply, each datum is eval-
uated and assigned to the corresponding variable in the
variable-list. If the input-reply contains no datum, or if
the end of file is reached from the channel from which the
input-reply 1is read, then an exception occurs unless a
missing-recovery is specified, in which case the specified
action is taken. If the missing-recovery is a line-number,
then an implied goto-statement is assumed. If the input-
reply does contain at least one datum, but the number of
data 1is less than the number of variables in the variable-
list, then the prompt is re-printed and a new input-reply is
received. Note that this does not ra-evaluate the string-
expression in the prompt-specifier.

Each type of datum in the input-reply must be the same

as  the type of the corresponding variable in the wvariable-
list. Notas that an unquotad-string mey be either type.

Examples

INPUT A
INPUT £3:A3

INPUT £10, AT 1,1, PROMPT "Name :", IF MISSING 100: NS

Associated keywords

LINE INPUT, READ, DATA. See line-input-statement, read-
statement, data-line.

Syntax

let-statement = '"LET'? variable-list '='
-.exprassion

Description

: The let-statement assigns a value to one or more
variables.

The type of all the variables in the variable-list must
be the same. The type of the expression must be the same as
the type of the variables in the variable-list.

Copyright (c¢) 1985 Intelligent Software Ltd Page 5-39

e ——— e e e r—



Enterprise IS-BASIC v3.0 - Specification 5. Statements

All the subscripts in the variable-list are evaluated
from 1left to right beforz the expression is evaluated. The
value of the expression is then assigned to the variables.

Examples
LET A=]1
A=1
LET A, B, FRED, A(10) = FRED+l
As ’ B$ ' Cs = un

Associated keywords

None.

LINE INPUT

Syntax

line-input-statement

'LINE INPUT' input-contral?
string-variable

line-input-reply character* end-of-line

Description

The line-input-statsment assigns the whole line-input-
reply to the specified string variable. This includes all
'y') ' ' and '"' characters.

The input-control 1is evaluated and used as in the
input~statement. In the case of the line-input-statsment,
the missing-racovery action is only taken if the end of file

is reached from the channel from which the line-input-reply
is read. Thus it is possible to input a null string.

Examples

LINE INPUT NAMES

Associated keywords

INPUT. See input-statement.

Copyright (c) 1985 Intelligent Software Ltd Page 5-40




Enterprise IS-BASIC v3.0 - Specification 5. Statements
LIST
Syntax
list-command = 'LIST' channel / ( (channel ':")?
segment-list? )
Description

The list-command is used to list all or part of the
current program to a channel.

If channel is not specified, then the default channel
of 0 (EDITOR:) is used.

) Bv specifying a channel, a file containing the ASCII
. reprasentation of the program can be obtained. This is 1in

contrast the save-command, which outputs the program in an
internal representation..

Examples

LIST

LIST -100

LIST FRED

LIST £10

LIST £10:100 TO LAST

Associated keywords

DELETE, SAVE. See delete—-command, save-command.

( LLIST
Syntax
llist-command = '"LLIST' channel / ((channel ':')?
segment-list?)
Description

The llist-command is used to list all or part of the
program to the printer.

Copyright (c) 1985 Intelligent Software Ltd Page 5-41



Enterprise IS-BASIC v3.0 - Specification "~ 5. Statements

The 1llist-command lists the program in the same way as

the list-command, except that if channel is not given then
channel 105 (PRINTER:) is used.

Examples

LLIST
LLIST FIRST TO 400

Associated keywords

LIST. See list-command.

LOAD

Syntax

load-command
load-channel
file—-name

'LOAD' load-channel? file-name
channel ':'!

string-expression

Description

The load-command is used to load BASIC programs, BASIC
extensions, system extansions and data from channels.

If loading BASIC programs, the load-command is able to
load programs saved in BASICs internal program
reprasentation with the save-command, or in ASCII saved with
the 1list-command. In the latter case, the ASCII should
contain no 'immediate-mode' commands.

If the program was saved with an all-option, then all
programs in memory will be deletad before loading the
program. If the program was not saved with an all-option,

then only the current program will be deleted before loading
the new one.

When loading BASIC extensions, some RAM may be taken
away from the RAM usable by program 0. :

When loading System ExXtensions, some extra RAM may be
taken by the system.

Copyright (c) 1985 Intelligent Software Ltd ' Page 5-42




Enterprise IS-BASIC v3.0 - Specification 5.

LOOK

Statements

If a load-channel is specified, then data can be loaded
to the specified channel. This is so that the contents of a
previously saved editor buffer or video page can be loaded.
In the case of a video page, the channel being loaded to
must be the same size, mode and colour mode as the original
page.

Examples

LOAD
LOAD "TAPE:MY PROG"
LOAD £101: "PICTURE"

Associated keywords

MERGE, SAVE. See merge—~command, save-command.

Syntax

look-line

line-number look-statement tail
look—-statament

'LOOK' look-list? numeric-
variable

look-list = look-item (',' look-item)* ':'

look-item = beam-at / channel

beam—-at = 'AT' numeric-expression ','
numeric-expression

Description

The look-line assigns to a numeric-variable the ordinal
position of the charactar at the current cursor position or
the palette colour of the point at the current beam position
depending upon whether the channel is a video text page or
graphics page, repectively. If the channel is not given as a

look-item, then the default channel of 101 (GRAPHICS:) 1is
used.

If the beam-~at is given, then the beam is turned off
and moved to the co~ordinates specified by the numeric-
expressions. The first numeric-expression 1is the x co-
ordinats, and the second numeric-expression is the y co-

ordinate. The beam-at should not be used if the channel
refers to a text page.

Copyright (c) 1985 Intelligent Software Ltd : Page 5-43

e e e e A e T T



Enterprise IS-BASIC v3.0 - Specification ~ 5.

Statements

Examples

LOCK A
LOOK £10, AT 500,500: A

Associated keywords

None.
LOoQP
Syntax
do-line = line-number do-statement tail
do-statament = 'LOOP' exit-condition?
Description

The 1loop-line ends a DO...LOOP, which is a loop
repeated while or until a condition is true. It must be
matched by an associated do-line.

When the loop-line is executad, the exit-condition (if
given) 1is evaluated, and if true the next program line is
executad. If true, then the associatad do-line is executed.
Examples

LooP

LOOP WHILE X<10
Associated keywords

DO. See do-line.

LPRINT

Syntax

lprint-statement = 'LPRINT' print-control? print-
list?

‘print-control = print-control-item (',' print-
control-itam)* '

print-control-item = channel / cursor-at / using-
specifier

using-specifier = 'USING' (string-expression /

line—-number)

Copyright (c) 1985 Intelligent Software Ltd Page 5-44

N




Enterprise IS-BASIC v3.0 - Specification 5.

Statements
print-list = (print-item? print-separator)*
print-item?
print-item = expression / tab-call
tab-call = '"TAB' '(' numeric-expression ')’
print-separator = v, v / v ’
Description

The lprint-statement allows data to be printed to a
printer.

The print-control and print-list are evaluated as for

the print-statement, except that if the channel 1in the

print-control-item 1is nct specified then a default of 105
(PRINTER:) will be used.

Examples

LPRINT

LPRINT USING HOURSS: TIMES(:2)
Associated keywords

PRINT. See print-statament.

MERGE

Syntax

mer ge-command = 'MERGE' file-name?

Description

The merge-command allows a program not currently in
memory to be combined with the current program. The program

must either be in ASCII, or must have been saved without the
all-option.

Each line from the program specified by the file-name
is taken in turn, and inserted into the program as though it
had been typed in in 'immediate mode' ie. any existing line
with the same line number is first deleted, and then the new

line is inserted into the program at the appropriate
position.

' Copyright (c) 1985 Intelligent Software Ltd Page 5-45



Enterprise IS-BASIC v3.0 - Specification 5. Statements
Examples

MERGE

MERGE " 2:SUBROUTINES"
Associated keywords

LOAD. See load-command.

NEW

Syntax

new—command

'NEW' all-option?
all-option

'ALL'

Description
The new-command erases programs from memory.

~ If the all-option is not specified, then the current
program and all its variables is deleted from memory.

If the all-option is specified, then all programs in
memory are deleted, and program 0 is made the current
program.

Examples

NEW

NEW ALL
Associated keywords

DELETE. See deletz-command.

NEXT

Syntax

next-line

line-number next-statement tail
next-statement

'NEXT' simple-numeric-variable?

Copyright (c) 1985 Intelligent Software Ltd Page 5-46




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The next-line ends a FOR...NEXT loop,
matched by an associated for-line with a
the same as the simple-numeric-variable,

and must be
control-variable
if given.

When the next-line is executed, the increment of the
associated for-line is added to the current control-variable
value. The following condition is then evaluated:

(control-variable value = limit) * SGN(incrament) > 0
If this condition is zero (false) then execution cont-

inues at the line immediately following the associatsd for-

line. Otherwise, execution continues with the next program
line.

Examples

NEXT

NEXT X
Associated keywords

FOR. See for-line.

NUMERIC

Syntax

numeric-line = line—-number numeric-statement

tail
numeric-statement = '"NUMERIC' numeric-declaration
(',' numeric-declaration)*
numeric-declaration = pumeric-identifier bounds?
Description

The numeric-line 1is wused for the

declaration of
nureric-variables and numeric-arrays.

Typical use of the numeric-line is to declars 1local
simple-numeric-variables and numeric-arrays inside a
defined-function. Since the scope of variables in IS-BASIC
is dynamic, this ensures that the variable really will be

local, independant upon the context in which the defined-
function is invoked.

Copyright (c) 1985 Intelligent Software Ltd Page 5-47



Enterprise IS-BASIC v3.0 - Spééification 5. Statements
Examples

NUMERIC A, B, C(2 TC 4)

Associated keywords

DIM, STRING. See dim-line, string-line.

OK

Syntax

ok-command = 'QK'

Description

The ok-command is provided so that when using BASIC
with the screen editor, the cursor can be 'returned' over an
'ok! printed praviously by BASIC without causing an
exception. The ok-command does not do anything.

Examples

ok

Associated keywords

None.

ON

Syntax

on-line = line-number (on-goto-statement /

on—-gosub-stateament) tail

'ON' numeric-expression 'GOTO'

line~number-list

'ON' numeric-expression 'GOSUB'
line~-number-list

line-number (',' line—-number)*

on-goto-statement =
on—-gosub-statement =

line—-number-list =

Copyright (c) 1985 Intelligent Software Ltd Page 5-48




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The on-line allows execution to conditionally continue
at another selected program line. If the on-line contains an
on-goto-statement, then the effect of continuing execution
at the new line will be the same as if execution had contin-
ued there as a result of executing a goto-statement. If the
on-line contains an on-gosub-statement, then the effect of
continuing execution at the new line will be the same as if
execution had continued thers as a result of executing a
gosub-statement. In the latter case, a subsegquent return-
statement will cause execution to continue at the 1line
immediately following the original on-line.

The numeric-expression 1is first evaluated, and the
program line at which execution will continue is selected

from the line-number-list based on its wvalue. If the
numeric-expression evaluates to n, then execution will
continue at the nth line number in the 1list. n=1 => the

first line number in the line-number-list. If n exceeds the
number of line-numbers in the line~number-list or is

less

than one, then execution continues with the next program
line.
Examples

ON A GOTO 100,200,300

ON INK GOSUB 103, 467, 765, 654
Associated keywords ’

GOSUB, GQOTO, SELECT. See gosub-statement, goto-

statement, select-line.

OPEN

Syntax‘

open-statement

'OPEN' channel ':' open-name
access? record-number

'NAME'? file-name

'ACCESS' ('INPUT' / 'OUTPUT')
'RECORD' numeric=expression

open-name
accsass
record-number

Description

The open-statement opens an I/0 channel to a device and

possibly file via the operating system with the channel
number specified by channel.

Copyright (c) 1985 Intalligent Software Ltd Page 5-49

e e e et



Enterprise IS-BASIC v3.0 - Specification 5. Statements

If the access is 'OUTPUT' then a new file is createad.
If the access is '"INPUT' then an existing file is opened. If
no access is specified, 'INPUT' is assumed.

If the record-number is specified, then the file is
opened/created for random record reading and writing. The

record-number must then refer to a record structure that has
previously been defined using the record-statement.

Examples
OPEN £10: "FRED"

OPEN £11: NAME "TAPE:MY PROG" ACCESS OQUTPUT
OPEN £10: "MY DATA" RECORD 10

Associated keywords

CLOSE, RECORD. Se= close-statement, record-statement.

OPTION
Syntax
option-statement = 'OPTION' 'ANGLE' ('DEGREES' /
'"RADIANS ')
Description

The option-statement specifies the angle unit (degraes
or radians) wused in subseguent numeric-supplied-function
invokation. The angle unit in effect at the time affects
both the arguments to the function and the result raturned.

Initially, the angle unit in effect is is radians.

Examples

OPTION ANGLE DEGREES

Associated keywords

None.

Copyright (c) 1985 Intelligent Software Ltd Page 5-50




Enterprise IS-BASIC v3.0 - Specification

5. Statements

ouT
Syntax
out-statement = 'OUT' port ',' numeric—-expression
port = numeric-expression
Port must evaluate to a value in the range 0 to 255,
and is truncated to an integer.
Description
The out-statement ocutputs the value of the numeric-
expression to the 280 I/O port specified by port. The
numeric-expression in the out-~statzment must evaluate to a
value in the range 0 to 255 and is truncated to an integer.
(
Examples
ouT 3,100
Associated keywords
IN. See in-call.
P ING
Syntax
ping-statement = 'PING'
( Description

The ping-statement causes a 'ping'

Examples

PING

Associated keywords

None.

Copyright (c) 1985 Intelligent Software Ltd

sound to be emittad.

Page 5-51



Enterprise IS-BASIC v3.0 - Specification 5. Statements

PLOT

Syntax

plot-statement

'PLOT' (channel ':')? plot-list?
plot-list

plot-item (plot-separator plot-
item?)=*

paint-item / relative-plot-itam /
ellipse-item / beam-position
"PAINT'

("BACK' / 'FORWARD' / 'RIGHT' /
'"LEFT' / '"ANGLE' ) numeric-
expression

'ELLIPSE' numeric-expression ',
numeric-expression

plot-item

paint~item
relative-plot-itaem

ellipse-item

beam-position = numeric-expression ',' numeric-
expression

plot-separator = ', v/

Description

The plot-statement plots dots, lines and shapes on the
graphics screen specified by channel. If not given, then the
default of 101 (graphics VIDEO:) is used.

Each plot-item is separated by a plot-separator. If the
plot-separator 1is a ',', then the beam is turned off aftar
executing the plot-item. If the plot-separator is a ;'
then the beam is turned on after executing the plot-item.
The beam is similarly left on or off if the plot-statement
ends 1in a plot-separator. If it does not end in a plot-
separator, then the beam is turned on and then off, thus

plotting a point. If the beam is moved whilst the beam is
on, then a line is drawn.

If a paint-item is specified, then the screen is filled
in the current ink colour up to any boundary which is not
the same colour as that at the current beam position.

If an ellipse-~item is specified, then an ellipse or
circle 1is drawn. The first numeric-expression in the
ellipse-item specifies the radius on the x-axis, and the

second numeric-expression specifies the radius on the y-
axis.

If a beam-position is specified, then the beam is moved
to the position specified by the numeric-expressions. The
first numeric-expression is the x co-ordinate and the second

is the y co-ordinate. If the beam is on when the beam moves,
then a line is drawn.

Copyright (c) 1985 Intelligent Software Ltd Page 5-52




Enterprise IS-BASIC v3.0 - Specification

The relative-plot-items
'turtle graphics'. That is,
around the scresen, and can be

5. Statements

allow lines to be drawn wusing
an imaginary turtle is moved
rotated to face any diraction.

The beam is always moved with the turtle: moving the turtle
with the beam on thus draws a line. : :

'"FORWARD' and 'BACX' in a relative-plot-item move the
turtle

in the direction in which it is facing or the direac-
opposite that in which it is facing respectively the
number of co-ordinates specified by the numeric-expression.
'LEFT' and 'RIGHT' rotate the turtle anit-clockwise or
clockwise respectively to make it face in a different direc-

tion

tion. The numeric-expression in the curreant angle unit as
specified by the option-line, or radians initially. 'ANGLE'
sets the turtle facing a specified absolute angle in the

current angle unit. An angle of zero represents the direc-
tion of the positive y-axis, and is the initial diraction of
the turtle. The angle specified by the numeric-expression is
measurad anti-clockwise from the positive x-axis.

Examples
PLOT ! plots a point
PLOT 100,100; 300,300; 150,150, PAINT

PLOT ELLIPSE 100,100,

PLOT ANGLE 0; FORWARD 50; LEFT 90; FORWARD 50;

Associated keywords

SET. See set-statement.

POKRE

Syntax

poke-statement

'POKE' address,
expression
numeric-expreassion

numeric-

address

The address must evaluate to a value in the range 0 to
65535, and is truncated to an integer. '
Description

The poke-statement sets the byte at address to the
value of the numeric-expression, which must evaluate to a

value in the range 0 to 255, and is truncated to an integer.

Copyright (c) 1985 Intelligent Software Ltd Page 5-53



Enterprise IS-BASIC v3.0 - Specification 5. Statements

Examples

POKE FRED, O

Associated keywords

SPOKE, PEEK, SPEEK. See spoke-stateament, pesk-
statement, speesk-stateament.

PRINT

Syntax

print-statement = 'PRINT' print-control? print-
list?

Description

The print-statement allows data to be printed to a
channel. TIf no channel is specified in the print-control,
then the default channel of 0 (EDITOR:) is used.

A using-specifier allows data to be output in a
user-specified format. The string-expression is evaluated
and is used as a format-string (see image-line). If a line-
number is specified in a wusing-specifier, then the
raferenced program-line must contain an image-line, and the

format-string on that image-line will be used instead of the
string-expression. '

The print-items in the print-list are separated by one
or more print-separators. If the print-separator is ',°',
then an ASCII TAB character (code 9) 1is output. If the
print-separator is a ';' then nothing is output between the
print-items. If the print-statement ends in a print-
separator, then no carriage-return / line feed will be
output, otherwise theses are output at the end of all the
output generated by the print-items.

If a print-item is an expression, then the value of
that expression is convertad to ASCII and ocutput. If the
print-item is a tab-call, then the cursor is positioned to

the column specified by the numeric-expression. The first
column is considiered to be column one.

Examples

PRINT

PRINT A; B; C ,,,D; E; F

PRINT £10, AT 10,10, USING "££££.££": PAY
PRINT NAMES; TAB(20); ADDRESSS

Copyright (c) 1985 Intelligent Software Ltd Page 5-54

TN




Enterprise IS-BASIC v3.0 - Specification 5.

Statements
PRINT USING 100:2a, B
PRINT USING "g££.££8£":1 prints " 1.000"
PRINT USING "g££.£££":0.1 prints " .1ao"
PRINT USING "gg£.£2£77"":1 prints "100.000E-02"
PRINT USING "S$SE£":1 prints " $1"
PRINT USING "+££":1 prints " +1"
PRINT USING "-££":1 prints " 1"
PRINT USING "+££":-1 prints " -1"
PRINT USING "—-££":-1 prints " -1"
PRINT USING "*££g£, £22":1 prints "***1_,000"
PRINT USING "%£££":1 prints "0Q01"

PRINT USING "N=g£ K=£2":1,2 prints "N= 1 K= 2"
PRINT USING "££,££2£,£28":1E+7 prints " 1,000,000"

PRINT USING "*££":1,2 prints "**1"

UL SRl
PRINT USING "<E£££££22":"FRED" prints "FRED "
PRINT USING ">E££££2£2":"FRED" prints " FRED"
PRINT USING "g£££££22":"FRED" prints " FRED "

Associated keywords

IMAGE, LPRINT. See image-line, lprint-statement.

RANDOMIZE

Syntax

randomize~statement = 'RANDOMIZE'

Description

The randomize-statament re-seeds BASIC's pseudo-random
number generator. WNormally, when a program is run, the same
segquence of 'random' numbers is generated. If a randomize-
statement is executed near the beginning of the program,
then the sequence is set to an unpredictable point, thus

producing different 'random' numbers each time the program
is run. '

Examples

RANDOMIZE

Associated keywords

RND. See rand-call.

Copyright (c) 1985 Intelligent Software Ltd Page 5-55

e e T e



Enterprise IS-BASIC v3.0 - Specification 5. Statements

READ

Syntax

read-statement

'READ' read-control? variable-~
list

read-control missing-recovery ':'

Description -

The read-statement is used to input data intenal to the

program (ie. from data-statements) into numeric-variables or
string-variables.

The data is read from the seguence of data as defined
by data-statements. The data is assigned to the variables in
the variable-list as described in the input-statement,

except that the missing-recovery action will be taken if an

attempt is made to resad beyond the last datum in the last
data-statsment.

Examples

READ A
READ IF MISSING EXIT DO:A, BS, FREDS

Associated keywords

DATA, INPUT. See data-line, input-statement.

RECORD

Syntax

record-statement

'RECORD' numeric-expression

record-item
record-item = ',' variable

I

Description

The racord-statement defines a record format for random
record reads and write to a file. The record-statament must
precede the open/create operation on the file.

The numeric-expression identifies the racord structure,

and allows more than on open-statement to refer to the same
racord structure.

Copyright (c) 1985 Intelligent Software Ltd Page 5-56




Enterprise IS-BASIC v3.0 - Specifica%ion

5. Statements

The variables allow each field within the record to be
refered to mnemonically. Data is assigned to the fields
simply by assigning data to the variables specified in the
record-statement. In the case of string-variables given in
the record-item, the declared maximum length of the string-
variable is used to define the size of the field.

Aftar assigning data to all the fields regquirad, the
record can be written to a file using the write-statement.

Examples

10 STRING NAMES$*20, ADDRESS$*50

20 NUMERIC AGE

30 RECORD 3, NAMES, ADDRES3S, AGE

40 OPEN £10: "MY_DATA", ACCESS QUTPUT, RECORD 3

Associated keywords

FETCH, OPEN, RESET, WRITE. See fetch-statement, open-
statement, reset-statement, write-statement.

REDIRECT
Syntax
readirect-statement = 'REDIRECT' source-channel?
destination-channel?
Description

The rediract-statement causes any characters written to
the source-channel to be sent instead to the destination-

channel. The redirect operation will cease when one of the
following conditions occurs:

- the STOP key is prassed
- an error occurs from the destination-channel
- a subseguent rediract-statement is performed with the

same source-channel but with a destination channel of
255.

The source—-channel defaults to 0 (EDITOR:) and the
destination-channel defaults to 104 (PRINTER:).

Copyright (c) 1985 Intelligent Software Ltd Page 5-57




]

Enterprise IS-BASIC v3.0 - Specification 5. Statements

Examples
REDIRECT

REDIRECT FROM £104 TO £190
REDIRECT FROM £104 TO £255

Associated keywords

CAPTURE, COPY. See capture-statement, copy-statement.

REM
Syntax
rem-statament = 'REM' remark-string end-of-line
Description

The rem-statement indicates the end of the statsements
on a program-line, and introduces a comment. When a rem-
statement 1is executed, execution continues with the next
program line with no further effect.

For more flexible commenting, ‘'pling comments' are
recommended and are introduced with *'1!', They are not
considered to be separate statements and so mey be used with
lines and commands.

Examples

PRINT:PRINT: REM new lines v
Associated keywords

See tail.

RENUMBER

Syntax

renumber-command

' RENUMBER' renumber-item*
renumber-item

at-number / step-size / segment-
specifier

Copyright (c) 1985 Intelligent Software Ltd Page 5-58




A ]
Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The renumber-command renumbers all line-numbers in the
program, both those occuring within statements and lines and
those occuring at the start of a program-line.

The segment-specifier specifies the range of .program
lines to renumber, and defaults to renumbering the whole

program If only a segment of the program is renumbered, then
references to the renumbered lines will still be changed
throuout the whole program.

The at-number specifies the new line-number for the
first 1line 1in the segment-specifier, and defaults to 100
unless a defined-function or handler is being renumbered, in
which case it defaults to the current line number of the
first line of the definied-function or handler.

The step-size specifies the increment to add to the at-

number for each subseguent program line that is renumbered,
and defaults to 10.

Examples

RENUMBER

RENUMBER MY HANDLER STEP 5

RENUMBER 400 TO LAST AT 1000 STEP 20
Associated keywords

None.

RESET

Syntax

reset-statement

'"RESET' channel ':' reset-itam
reset-item

'END' / numeric-expression

Description

The reset-statement is used for moving the file pointer
on a file. It is used for random access on the file down the
specified channel when not using the record structuring
facilities for BASIC. The two should not be mixed up.

If 'END' is speéified in the reset-item, then the file
pointer 1is moved to the end of the file. Otherwise, the
numeric-expression is the new value of the file pointer.

Copyright (c) 1985 Intelligent Software Ltd Page 5-59

e USRS RS . e r e e
A e oo e e et gz e e —



Enterprise IS-BASIC v3.0 - Specification 5.

Examples

4

Statements

RESET £10:END
RESET £11: R*C

Associated keywords

POINTER. See pointer-call.

RESTORE

raestorae-statement = 'RESTORE' line—-number?

Description

seguence
statement

restore-statament changes the position in the data
defined by data-statements that the next read-
will read data from.

next data read will be from the next data-~line on
the specified line-number. If the line-number is

specified, then the next data read will be the first
datum in the first data-statement in the program.

Examples

RESTORE
RESTORE 534

Associated keywords

DATA, READ. See data-statement, read-statement.

return-statement = 'RETURN'

Copyright (c) 1985 Intelligent Software Ltd Page 5-60




Enterprise IS-BASIC v3.0 - Specification 5.

RUN

N

)

Statements

Description

The return-statement causes execution to continue at
the program-line immediately following the last gosub-

statement executed . that has not been the subject of

a
return-statement.

Care should be exerzised when mixing gosub-statements
with the DO...LOOPs, FOR...NEXT loops, DEF...END DEFs etc.

Examples

RETURN

Associated keywords

GOSUB. See gosub-statement,

Syntax

run-statement = 'RUN' file-name? argument-list?

Description

The run-statement initiatass execution of the current
program if the file-name is not given, or the program in the
file named by the file-name otherwise.

If the file-name is given, then the named program is
loaded as in the load-command.

The argument-list, if given, 1is passed to the program
to be run as in the chain-statement..

Examples

RUN
RUN "TAPE:MY_PROG" (100)

Associated keywords

CHAIN, LOAD. See chain-statement, load-command.

Copyright (c) 1985 Intelligent Software Ltd Page 5-61




\ _

Enterprise IS-BASIC v3.0 - Specification 5. Statements

RETRY

Syntax

retry-line = line-number 'RETRY' tail

Description

The retry-line is used as an exit from an exception
handler. Execution continues at the start of the line that

caused the exception ie. the erroneous program-line is

re-
executad.

Examples

10 RETRY

Associated keywords

CONTINUE, HANDLER, END HANDLER, EXIT HANDLER. See

continue-line, handler-line, end-handler-line, exit-handler-
statement.

SAVE

sSyntax

save-command

'SAVE' save-option? file-name?
save-option

all-option / (channel ':')

Description

The save-command saves a program to a file in an
inernal representation of the program (ie. not ASCII).

If the all-option is given, then all programs in memory

are saved to the file. Otherwise, only the current program
is saved.

If the file-name is given, then the file and device
specified in it are used. If no file-name is given, then
BASIC 1looks to see if it can generate a file-name from a
program-name—line. If the all-option is not given, then a
program-name given on the first line of the current program
may be used; otherwise a program-name given on the first
line of program number 0 may be used. If the program-name is
a quoted-string, then that is used as the file-name. Qther-
wise a string of zero length is used as the file-name.

Copyright (c) 1985 Intelligent Software Ltd Page 5-62




5

Enterprise IS-BASIC v3.0 - Specification 5. Statements

If a channel is given as a save-option, then data from
the specified channel is saved. This enables the contents of
an editor buffer or a video page to be saved and later re-

loaded to a similar buffer or page.
Examples

SAVE
SAVE ALL "TAPE2:MY PROG3"
SAVE £101: "PICTURE"

Associated keywords

LLIST, LOAD, MERGE, VERIFY. See list~-command, load-
command, merge—command, verify-command.

SELECT
Syntax
select-line = line-number 'SELECT' 'CASE'?
' expression tail
Description

. The select-line 1introduces a group of blocks or
program-lines which are executed according to the

expression., It must be matched by an associated end-select-
line.

When executed, each associated case-line is found, and
the condition expression compared to the case-items in the
case-list as specified for the case-line. When the
expression matches a case-line, execution continues with the
program-line immediately following that line. If execution
then reaches another case-line, then execution continues

with the line immediately following the associated end-
select-line.

Copyright (c) 1985 Intelligent Software Ltd Page 5-63



4

Enterprise IS-BASIC v3.0 - Specification 5. Statements

Examples

SELECT A
SELECT CASE A$(4:5)

Associated keywords

CASE, END SELECT. See case-line, end-select-line.

Syntax

set-statement 'SET' exos-variable-set / escape-—

sequence-sat / fkey-set
exos-variable exos-variable-value
'ON' / 'OFF' / numeric-expréssion
(channel ':')? escape-seguence-
text numeric-expression (','
numeric-expression)*

'"ATTRIBUTES ' / 'PALETTE' /
'"COLOR' / 'COLOUR' / '"PAPER' /
'INK' / 'CHARACTER'® /

'"CURSCOR CHARACTER /

'"CURSOR COLOR' /

'"CURSOR COLOUR' / 'SCROLL ON' /
'SCROLL OFF' / 'SCROLL Up' /
'SCROLL DOWN' / 'BEAM ON! /

'BEAM OFF' / 'LINE STYLE' /

eXlis-variable-set
exos-variable-value
escape—-seguenca-—-sat

o

escape-seguence-taxt

'LINE MODE'

fkey-set = 'FKEY' numeric-expression string-
expreassion

Description

The set-statement alters a system parametsr. This
is done either by altsring the value of an EXOS
variable, sending an escape sequence to a channel, or

by a special function call in the case of the fkey-
set.

If an exos-variable~set is specified, then the
new value written to the EXOS variable is the number-
expression 1in the exos-variable-value. If the exos-

variable-value is 'ON' or 'OFF', then a value of 0 or
255 respectively is used.

Copyright (c) 1985 Intelligent Software Ltd Page 5-64



Enterprise IS-BASIC v3.0 - Specification 5. Statements

If an escape—sequence-set is specified, then an
escape sequence is sent to the channel, 1if specified,
followed by as many numeric-expressions the particular
escape seguence requires. Any if the number of
numeric-expressions is less than required by a
particular excape sequence, then the rest of the
parameters all default to 0. The escape-seguence-text

correspond to the escape sequences described 1in the
EX0OS documentation.

If an fkey-set is specified, then the function

key indicated by the numeric-expression is programmed

with the string-expression. Function keys ars numbered
from one.

Examples
SET £10:INK 1

SET CHARACTER 1,2,4,8,16,32,64,128
SET CURSOR CHARACTER 10

Associated keywords

ASK, TOGGLE. See ask-statement, toggle-statement.

SOUND
Syntax
sound-statement = 'SOUND' (channel ':') sound-list
sound-list = sound-item ((',' / ';') sound-
item)*

sound-item

'"INTERRUPT' / ( ('PITCH' /
'DURATION' / 'LEFT' / 'RIGHT' /
'SQURCE' / 'STYLE' / 'ENVELOPE' /
'SYNC') numeric-expression)

Description

The sound statement send the appropriate escape
sequence to the channel if specified to produce a sound
using an envlope previously defined using the envelope-

statement. If channel is not given, then the default of 103
(SOUND:).

'PITCH' specifies the overall pitch, and must be in the
range 0 to 127. 1In the range 0 to 83, and increase of one
represents an increase in pitch of one semitone. Fractional
pitch values can be given. The default is 37 (middle C).

Copyright (c) 1985 Intelligent Software Ltd Page 5-65



- \ N
Enterprise IS-BASIC v3.0 - Specification 5. Statements

'DURATION' specifies the duration of the non-release

phase of the envelope on 1/50ths of a second. The default is
1 second.

'LEFT' and 'RIGHT' specify the overall volume for the
left and right channels respectively. Both must be in the

range 0 (silence) to 255, and are truncated to integers. The
default is 63.

'SQURCE' specifies the tone generator used, and must be

in the range 0 to 3. 3 indicates the noise channel. The
default is 0.

'STYLE' specifys various effects that can be applied.

It must be in the range 0 to 255 and is truncated to an
integer. The default is 0.

'ENVELOPE' specifies the evelope to be used. Values 0
to 254 refer to envelopes which must have been presviously
" defined using the envelope-statement. Envelope number 255
refers to a 'built-in' envelope, and is the default.

'SYNC' allows the start of the sound to

synchronised
with sounds on other channels. The default is O.

'INTERRUPT' if given causes the sound being defined to
overide any sound on the same channel that may already be
going. Otherwise, the new sound will be added to the queue.

Examples

SOUND
SOUND £10:DURATION 10, PITCH 1000

Associated keywords

ENVELOPE. See envelope-statement.

SPOKE

Syntax

spoke-statement 'SPOKE' segment ',' address ','

14
numeric-expression

segment : = numeric-expression

Segment must be evaluate to a value in the range 0 to
255, and is truncated to an integer.

Copyright (c) 1985 Intelligent Software Ltd Page 5-66




Enterprise IS-BASIC v3.0 - Specificafion 5. Statements

Description

The spoke-statement sets the byte at address (ANDed
down to a value in the range 0 to 16383) within the segment
to the value of the numeric-expression, which must be in the
range 0 to 255 and is truncated to an integer.

Examples

SPOKE 255, POINTER, O

Associated keywords

POKE, SPEEK, PEEX. See poke—stateﬁent, spesk-statement,
peek-statement.

START

Syntax

start-command ’ = 'START'

Description
The start-command runs the current program if there is

one program in memory. Otherwise, a program is loaded with a

file—-name of a string with zero length as specified in the
load-command.

Examples

START

Associated keywords

LOAD, RUN. See load-command, run-statement.

STOP

Syntax

stop-statament = 'STOP'

Copyright (c) 1985 Intelligent Software Ltd Page 5-67




_ , -
Enterprise IS-BASIC v3.0 - Specification 5.
Description

-The stop-statement halts execution of the
printing the line at which the program was stopped. It

Statements

program,

may

be subsequently continued again with the continue-statement.

Examples

STOP

Associated keywords

CONTINUE. See continue-line.

STRING

Syntax

string-line

line—-number string-statement
string-statement

'STRING' length-max? string-
declaration (',' string-
declaration)*

'*!' integer

length-max
string-declaration

max?

The integer 1in length-max must be in the range 0
254.

Description

tail

string-identifier bounds? length-

to

The string-line is used to declare simple-string-
variables and string-arrays. It can alsoc be used to declare

the maximum length of a string.

Typical use of the string-line is to declare 1local
simple-string-variables and string-arrays inside a defined-
function. Since the scope of variables in IS-BASIC is dyna-

mic, this

ensures that the variable really will be 1local,

independant upon the context in which the defined-function

is invoked.

The length-max in the string-declaration, if given,

specifies the maximum number of characters that the
can contain. If it is not given, then the
specified in the string-statement is used. If this is
specified, then the default of 132 characters is used.

Copyright (c) 1985 Intelligent Software Ltd Page

string
length-max

not

5-68




Enterprise IS-BASIC v3.0 - Specification 5. Statements

Examples

STRING AS, BS
STRING *10 C$, D$(12,12)*100

Associated keywords

DIM, NUMERIC. See dim-line, numeric-line.

TEXT

Syntax

text-statement = '"TEXT' numeric-expression?

Description

The text-statement sets up and displays 24 lines of
text. If the numeric-expression is given, then it must
evaluate to a value of 40 or 80, in which case 40 or 80
columns respectively are set up. If it is not given, then
the last value used, or 40 initially, is assumed.

Examples

TEXT
TEXT 80

Associated keywords

DISPLAY, GRAPHICS. See display-statement, graphics-
statement. ;

T IME

Syntax

time-statement = '"TIME' string-expression

Copyright (c) 1985 Intelligent Software Ltd Page 5-69




)

Enterprise IS-BASIC v3.0 - Specification 5. Statements

Description

The time-statement allows the internal time counter to
be set. The string-expression must evaluate to a string

containing 8 characters in the format specified by ANSI
Standard X3.43 which is "HH:MM:S3".

Examples

TIME "21:06:45" ! 9 hrs, 6 mins, 45 secs pm.

Associated keywords

TIMES. See time-call.
TOGGLE
Syntax
toggle-statament = 'TOGGLE' exos-variable

Description

The toggle-statement one's complements the specified
exos-variable. For many EXOS variables, this has the effect
of toggling the state of some system feature.

Examples

TOGGLE KEY CLICK

Associated keywords

ASK, SET. See ask-statement, set-statament.

TRACE

Syntax

trace-statement

'"TRACE' ('ON' / 'OFF') trace-
channel?

'TO' channel

'<'" line-number '>!

trace-channel
trace-cutput

Copyright (c) 1985 Intelligent Software Ltd Page 5-70

o~




Enterprise IS-BASIC v3.0 - Specification 5.

TYPE

Copyright (c) 1985 Intelligent Software Ltd Page 5-71

Statements

Description

The trace-statement allows the execution path of the
program to be seen.

When 'ON' 1is given, then every time a new 1line is
executed, the line-number 1is output in the format of the
trace-output to the channel specified in the trace-channel.
If the trace-channel is not given, the the default of 0
(EDITOR:) is used.

This feature is turned off when 'OFF' is given.

Examples

TRACE ON TO £10
TRACE OFF

Associated keywords

None.

Syntax

type-statement = 'TYPE'

Description

The type-statement exits BASIC, and enters the Enter-
prise WP (word processor) program. If used in 'immediate
mode' then an ‘'Are you surs' type prompt is printed, since
exiting BASIC erases all programs in memory. '

Examples

TYPE

Associated keywords

EXT. See ext-statament.

et g e e g e " T e



Enterprise IS-BASIC v3.0 - Specification 5.

$

Statements

VERIFY

WAIT

Copyright (c) 1985 Intelligent Software Ltd

Syntax

verify-command

'VERIFY' verify-channel file-
name?

verify-channel channel ':'

Description

The verify-command compares the file specified bv the
file-name with a program or channel in memory, and causes an
exception if they are not the same.

The file may be either an application saved with the
all-option in the save-command, 1in which case all programs

are verified, a singe program saved without the all-option
in which case only the current program is verified, or a
channel (when channel is given) in which case data on that
channel is verified. The latter form is used for verifying a

file containing previously saved editor buffer or video page
contents. -

If no file-name is given, then a string with zero
length is used as the file name.

Examples

VERIFY
VERIFY "MY PROG"
VERIFY £101: "PICTURE"

Associated keywords

LOAD, SAVE. See load-command, save-command.

Syntax

wait-statement = '"WAIT' 'DELAY'? numeric-
expression

Page 5-72




7N

‘
Enterprise IS-BASIC v3.0 - Specification 5.

WHEN

Statements

Description

The walt-statement pauses for the number of seconds
indicated by the numeric-expression.

Examples

WAIT DELAY 5

Associated keywords

None.

Syntax

when-line
when-statement

line—-number when-statement tail
'TWHEN' 'EXCEPTION' 'USE' handler

Description

The when-line marks the start of a block of program
lines terminated by an associated end-when-line.

When a when-line is executed, execution continues with
the next program line with no further effect. If an
exception occurs on a program line between the when-line and
the associated end-when-line, however, then execution will
continue with the named handler, which may then handle the
exception. This may cause execution to continue again with
the main program-lines (via the continue-statement or retry-
line) or may cause execution to continue elsewhere (via the
ex it-handler-statement or end-handler-line).

Examples

10 WHEN EXCEPTION USE MY_HANDLER

Associated keywords

HANDLER, END HANDLER, END WHEN. See handler-line, end-

handler-line, end-when-line, continue-statement, retry-line,
exit-handler-line.

Copyright (c) 1985 Intelligent Software Ltd Page 5-73

e o e v——————



- ,
Enterprise IS-BASIC v3.0 ~ Specification

WRITE

Syntax

write-statement = '"WRITE' channel (':!

Description

The write-statement allows the data
record for the specified channel to be

channel as the specified record.

If record is omitted then the default

record read/written is used.

Examples

WRITE £10
WRITE £10:47

Associated keywords

5. Statements

record)?

the current

written to the

of the 1last

FETCH, RECORD, REC. See fetch-statement, record-

statement, rec-call.

Copyright (c) 1985 Intelligent Software Ltd

Page 5-74




Enterprise IS-BASIC v3.0 - Specification _ 6.

A}

Functions

6. FUNCTIONS

This chapter defines the syntax and action of all the
predefined functions available in IS-BASIC.

Each function description is split into two parts:

- name and value

- syntax

In the descriptions below, N, X, Y and 2 stand for
numeric-expressions. X$, Y5 and %S stand for string-
expressions. V stands for a numeric-variable. V$ stands for
a string-variable. A stands for a numeric- or string-array.

Each numeric-function accepts numeric arguments in any

( range except where noted. Where appropriate, numeric

arguments are 1in current angle unit (see option-
statement).

ABS (X) - The absolute value of X.

abs-call = 'ABS'
ACOS (X) - The arccosine of X.
, acos-call = 'ACOS'

ANGLE(X,Y) - The angle between the positive x-
axis and the vector joining the
origin to the point with co-
ordinates (X,Y), where -PI <

( ANGLE(X,Y) < PI. ANGLE(0,0) is O.
~ Note that anti-clockwise is
positive.
angle-call = 'ANGLE'

ASIN(X) - The arcsine of X, where -PI/2 £
ASIN(X) <PI/2. -1 < X < 1.

asin-call = 'ASIN'

ATN(X) - The arctangent of X, where

atn-call

Copyright (c) 1985 Intelligent Software Ltd

-(PL/2) < ATN(X) < (PI/2).

'ATN'

Page 6-1

o e = e e e p———



o Y
Enterprise IS-BASIC v3.0 - Specification 6.

BIN(X)

bin-call

BLACK

black-call

BLUE

blue-call

CEIL(X)

ceil-call

CHRS (X)

chr-call

COS(X)

cos—-call

CcosH

cosh-call

COT(X)

cot-call

CSC(X)

csc—-call

Functions

The decimal egquivalent of X,
regarding the 1 and 0 characters
in X as a binary number. The
result 1is unpredictable if X

contains digits other than 1 and
0.

'BIN'

0.

'BLACK!'

36.

'BLUE'

The smallest integer not less
than X.

'CEIL’

The one—characeter string
containing the character with
ordinal position X in the ASCII

charactaer set.

'CHRS'

The cosine of X.

'Cos!

The hyperbolic tosine of X.

'COSH'

The cotangent of X.

'COoT'

The cosecant of X.

'CsC!

Copyright (c) 1985 Intelligent Software Ltd Page 6-2




A}

Enterprise IS-BASIC v3.0 - Specification

CYAN
cyan—-call
DATES
date-call
DEG(X)
deg~-call
EOF (X)
EPS(X)
eps-call
EXLINE
exline-call
EXP (X)

exp-call

182.

'CYAN'

The curr=nt value
date counter
specified by ANSI
ie. "YYYYMMDD".

'DATES'

The nunber of
radians.

'DEG'

6. Functions

of the internal
in the form
Standard X3.30

degrees in X

True if the end of file on
channel X has been resached. Used
with BASICs random record I/O

stataements.

The smallest number representable

in IS-BASIC which,

when added to

or subtracted from X will change
the 12th or smaller digit of X.

'EPS'

The line number on which the last
exception occured, or 0 if the

last exception

'immediate mode'.

'"EXLINE'

The exponential

was from

of X 1ie. the

value of the base of natural

logarithms

(e=2.7182818459)

raised to the power X.

'EXP!

Copyright (c) 1985 Intelligent Software Ltd

e e e e et Y Y



- .
Enterprise IS-BASIC v3.0 - Specification 6.

EXSTRINGS (X)

exstring-call

EXTYPE

extype-call

FREE

free-call

FP (X)

fp-call

GREEN

green-call

HEXS (X§)

hex-call

IN(port)

in-call

Copyright (c) 1985 Intelligent Software Ltd

Functions

A string containing the error
message that would be printed by
BASIC is exception number X
occured when no exception was
active.

'"EXSTRINGS'

The number of the last exception
that occured.

'EXTYPE'

The number of bytes of RAM that
are free for use by the current
program.

'FREE'

The fractional part of X ie. X-
IP(X).

IFP|

14s6.

'GREEN'

A string of bytes which corres-
pond to the hexadecimal numbers
in X$. The hexadecimal numbers
are separated by ',', and consist
of one or two ASCII digits or
upper—- or lower-case characters
in the range 'A' to 'F' or 'a' to
lfl.

'HE:X$ 1

The byte read from the Z80 port.

lINl

Page 6-4




A}
Enterprise IS-BASIC v3.0 - Specification 6.

INKEYS

inkey-call
INF

inf-call
INT(X)

int-call
IP (X)

ip-call

JOY (X)

joy~-call

LBOUND(A)
LBOUND(A,N)

lbound-call

LCASES (X$)

lcase-call

Functions

A string containing a single
character read from the keyboard,
or .a string with zero length if
no key was pressed.

' INKEYS'

The largest positive number
representable by IS-BASIC.

' INF'

The largest integer not greater
than X.

TINT?
The integer part of X ie.
SGN(X)*INT(ABS(X)).

lIPI

The value read from joystick X.

'Joy’

The minimum value allowed for the
Nth subscript of A. If N is
omitted, then A must be a single-
dimension array.

'LBOUND'

The string resulting from the
replacement off each upper-case
ASCII character 1in X§$§ by its
lower-case eqguivalent.

'LCASES"

LEN(XS) The number of characters in XS.
len-call 'LEN'
Copyr%ght (c) 1985 Intelligent Software Ltd Page 6-5

% 1985



o Y
Enterprise IS-BASIC v3.0 - Specification 6.

LOG(X)
log—-call
LOG1l0(X)
logl0-call
LOG2 (X)
log2-call
LTRIMS (X3$)
ltrim-call
MAGENTA

magenta-call
MAX(X,Y)

max—-call
MAXLEN(VS)

maxlen-call

MIN(X,Y)

min-call

MOD(X,Y)

mod-call

Copyright (c) 1985 Intelligent Software Ltd

Functions

The natural logarithm of X. X
must be graeter than zero.

'LOG"

The common logarithm of X. X must
be greater than zero.
'LOG2"

The base 2 logarithm of X. X must
be greater than zero.

'LOG2"!

X3 with all leading space charac-
ters removed.

'LTRIMS'

109.

'"MAGENTA'
The maximum value of X and Y.
' MAX '

The maximum number of characters
that may be contained in VS.

'MAXLEN'

The minimum value of X and Y.

'MIN'

X modulo Y ie. X-Y*INT(X/Y).

'MOD'’

Page 6-6




A}
Enterprise IS-BASIC v3.0 - Specification 6.

ORD(XS)
Qrd—call

PEEK(address)

peek-call
PI

pi-call
POINTER(X)

pointer-call

POS(X$,Y¥8)
POS(X$,¥$,N)

pos-call

RAD(X)

rad-call

REC(X)

rec-call

Copyright (c) 1985 Intelligent Software Ltd

Functions

The ASCII wvalue of the first
characeter in XS.

'ORD'

The byte at the Z80 address.

'PEEK'

3.1415926536.

|PII

The current file pointer for the
file on channel X.

'POINTER'

The character position within X$
of the first character of the
first occurance of ¥Y$ within XS,
starting at character number N,
or character number 1 if N is not
given. If Y$ does not occure
within the specified portion of
X$, or if N is greater than the
number of characters in X$, then
zero 1is returned. If ¥Y$S has a
length of zero, then the value
returned is N (or one if N is not
given).

'POS!

The number of radians in X
degrees.

'RAD!

The current tecord number for
channel X.

'REC'

Page 6-7



- ,
Enterprise IS-BASIC v3.0 - Specification 6.

RED

red-call

REM(X,Y)

rem—call

RGB(X,Y,2)

RND
RND(X)

rnd-call

ROUND(X,N)

round-call

RTRIMS (XS$)

rtrim-call

SEC

sec-call

Copyright (c) 1985 Intelligent Software Ltd

Functions

73.

'RED!

The remainder of X divided by Y
ie. X-Y*IP(X/Y).

|REMI

The Enterprise absolute colour
number for a colour consisting of
X, Y and Z amounts of red, greem

and blue respectively. 0 < X,Y,Z
< 1.

A pseudo-random number. If X is
not given, then the pseudo-random
number returned is 0 <r < 1,
where r is the number returned.
If X is given, then the number
returned 1is a positive integer
less then X. X must be in the
range 1 to 32767.

'RND'

The wvalue of X rounded to N
decimal digits to the right of
the decimal point (or -N digits
to the 1left if N < 0), ie.
INT(X*L0"N+0.5)/10"N.

'ROUND'

X$ with all trailing space
characters removed.

'RTRIMS'

The secant of X.

'SEC'

Page 6-8

—~




-

]
Enterprise IS-BASIC v3.0 - Specification

SIN(X)

sin-call

SINH(X)

sinhfcall

SIZE(A)
SIZE(A,N)

size-call

SGN (X)

sgn-call

SPEEK (X ,address)

speek-call

STRS(X)

str-call
SQR(X)
sgqr-call

TAN(X)

tan-call

The sine of X.

'SIN'

The hyperbolic

'SINH'

6. Functions

sine of X.

The number of permissible values

for the Nth subscript of a,

or

the total number of elements in A
if N is omitted.

'SIZE'

The sign of X: -1 if X < 0, 0 if
X= 0, and +1 if X > 0.

"SGN'

The byte at

segment X.

address

within
Address is ANDed down

to an offset within the segment,

and X must be in the range 0 to
255 and 1is truncated to an
integer.
'SPEEK'

- The string of ASCII characters

that would be printed in a print-

statement

if X was printed,

- without any leading spaces.

'STRS'

The square root of X.

positive.

ISQRI

The tangent of X.

'TAN"

Copyright (c) 1985 Intelligent Software Ltd

but

X must be

Page 6-9



. .
Enterprise IS-BASIC v3.0 ~ Specification 6.

TANH(X)

tanh-call

TIMES

time-call

TRUNCATE(X,N)

truncate-~call
UBOUND(A)
UBOUND(A,N)

ubound-call

UCASES (X$)

ucase—-call

USR(address)
USR(address, Y)

usr-call

Copyr%ght (c) 1985 Intelligent Software Ltd
(c) 1985 Int=]_ .
= llgent

Functions

The hyperbolic tangent of X.

'TANH'

The current value of the internal
time counter in the format
specified by ANSI Standard X3.43
ie. "HH:MM:SS".

'TIMES'

The value of X truncated to N
decimal digits +to the right of
the decimal point (or -N digits
to the 1left if N < 0), ie.
IP(X*10°N) /10" N.

'"TRUNCATE'

The maximum value allowed for the
Nth subscript of A. If N is
omitted, then A must be a single-
dimension array.

'UBOUND'

The string resulting £from the
replacement off each lower-case
ASCITI character in X$ by its
upper-case eguivalent.

'UCASES'

The value returned in 780
register HL from the machine-code
subroutine at address. Y, |1if
given, is in HL when the
subroutine is entered.

'USR'

Page 6-10

SOF ..



Enterprise IS-BASIC v3.0 - Specification 6.

VAL (XS)

val-call

VERS$

ver-call

VERNUM

vernum-call

WHITE

white-call

YELLOW

yellow-call

WORDS (X))

word-call

Copyright (c) 1985 Intelligent Software Ltd

A ]
Functions

The value of the numeric constant
represented by the characters in
X$ from the first character upto
and including the last ASCII
digit.

'VAL'

A string containing the version
number and a copyright message.

'VERS'

The version number, 3.0.

'VERNUM'

255.

'WHITE'

219.

'YELLOW'

A two-character string containing
the least-significant byte and
the most-significant byte of X,
which must be in the range 0 to

65535. The first character in the
string 1is the most-significant
byte.

'WORDS'

.Page 6-11






