| W—

A..-4

A - -

W

(s L. s L., .4 L

L. .

£ _a

N

26-Nov-84 EXOS 2.0 - Printer Driver Specification Page 1

l.

2.

General Device Interface

The printer driver is a very simple device which Just
sends characters to a printer (or other device) using the
built in centronics type parallel interface.

Only one channel at a time may be open to the printer
driver, if an attempt is made to open a second channel then
an error (.2NDCH) will be returned. A channel can be
opened by giving the device name "PRINTER:", any filename
or unit number 1s 1ignored.

Having opened a channel characters can be written using
either the single characer write or the block write
function call. The characters will be sent without any

interpretation at all, and all 8 bits are sent.

Hardware Details

The hardware consists of one eight bit output port for

the parallel data (port OBGh),irone other output bit for a
h) and one input bit as a

data strobe (bit 4 of port 0B
ready signal (bit 3 of port 0B6h).

To send a byte the printer driver outputs the character
to the data port and then waits until the ready signal goes

low. When the ready signal is low 1t strobes the data by
setting the data strobe low for a few microseconds and then
setting it high again (it is normally high when not 1in

use). This completes the sending of a character.

The other bits of output port 0BS5h are used for various

control operations such as scanning the keyboard, anc

controlling remote control relays. A variable (PORTBS)

which 1s at a fixed address defines the current state of
this port and the printer driver ensures that all other

bits of the port are maintained 1n thelr correct state.

.+ anngdl

3. Quick Reference Summary - EXOS calls

OPEN/CREATE CHANNEL - Treated 1identically. Only one
channel. Device name "PRINTER:". Fillename and
unit number ignored. No EXOS variables to be set

£ -

..o L_.

e

be fore open.
CLOSE/DESTROY CHANNEL - Treated identically.
READ CHARACTER/BLOCK - Not supported.

++++++++++ END OF DOCUMENT ++++++++++

WRITE CHARACTER/BLOCK - Writes bytes without J.nteroretatlon.
READ STATUS - Not supported.
SET STATUS - Not supported.

"/ SPECIAL FUNCTION - No special functions.

: & -~
ET16/2 Copyright (C) 1984 Intelligent Software Limited &=




'—-—-—-—4

S.——a

)
;

h. -3

l-——-‘ | S Ao - A .-é

L*‘J

T

W

29-Nov-84 ' EXOS 2.0 - Editor Device Specification Page 1

1.

2.

Introduction

All the other built 1in device drivers provide an
interface to some aspect of the hardware such as the
cassette I/0 <circuitry or the DAVE chip. The editor
however does not interface directly to any hardware,
instead it provides a higher level user interface to two of
the other built 1in drivers - the video driver and the

keyboard driver.

An editor channel can be thought of as an 1intelligent,

- full screen editing terminal handler., It can be us2d by an

applications program to provide all of 1ts general purpose

communication with a |user. For example the IS-BASIC

cartridge does all of its screen and keyboard I/0 through

an editor channel. BASIC will be used frequently 1n this
document as an example of how to use the editor.

The editor can support any number of channels open to 1t
at a time, each channel <corresponds to a separate
"document"™ which is being edited. The word document here
is used loosely since for example the editor channel wused
by BASIC 1is referred to as a document although 1t 1s
actually a collection of BASIC commands, program listings,
error messages, program output, etc.

Each editor channel has video channel and a keyboard
channel associated with 1it. Different editor channels can
share the same keyboard channel  (which is essential since
the keyboard driver only allows one channel to be open to
it), but must have separate video channels.

Each editor channel also has an area of channel RAM
which 1t uses for a text buffer. This buffer can be any
size from a few hundred bytes to just under l6k and will
typically be a few kilobytes. Text can be entered into the
editor's buffer either from the apolications oprogram or
from the keyboard. The editor writes characters to the
video page 1in such a way that it 1is kept updated to form a
"window" onto the text buffer. This is not a true window
since the video page has its own copy of the text it 1is
displaying.

Opening Channels

An editor channel can be opened by giving the device
name "EDITOR:", any filename or unit number 1s 1gnored.

Before opening an editor channel, three EXOS variables must
be set up. These are:

VID _EDIT - Channel number of video page.
KEY EDIT -~ Channel number of keyboard channel.
BUF_EDIT - Size of editor buffer in units of 256 bytes.

ET18/4 Copyright (C) 1984 Intelligent Software Limited




29-Nov-84 EXOS 2.0 - Editor Device Specification Page 2

3.

ET18/4

The video and keyboard channels specified in VID_EDIT ¢

and KEY EDIT must be opened before opening the editor
channel. The video page must be a text mode and must be at
least 3 rows by 4 characters. The editor determines the
size and mode of the video page when the channel 1s opened
and returns an error (.EVID) if it 1s unsuitable. Note
that the editor does not display the video page on the
screen, 1t 1is up to the applications program to take care
of this,

The actual size of the editor's buffer which 1is
avalilable for storing text 1is: '

256*BUF EDIT + n

where 'n' is between zero and 255 and depends on the width
of the video page (space reserved for the ruler line) and
the exact size of the editor's variable area. The wvalid
range for BUF EDIT is thus zero to 254.

The editor will work with any size buffer but it 1s
sensible to ensure that it is at least as big as the video
page so that the editor is always capable of displaying a
full page. The editor stores lines as variable length 1in

its buffer so, since short lines are common, 1t generally ~

manages to store more than the calculated minimum number of
lines.

General Editor Features

3.1 The Editor's Text Buffer

As mentioned before the editor has a text buffer 1in
which it stores its text, and the video page just provides
a window onto part of this buffer. Text i1s stored in the
buffer on a line orientated basis. Each line has a three
byte line header containing certain flags and margin
information. This 1is followed by the text of the line
itself stored 1in ASCII. The line 1s terminated by a
special character which indicates whether it is the 1last
line 1in a paragraph and whether it is the last line in the
buf fer.

The 1lines are stored with variable length so if a line
only has four characters on it, followed by 36 spaces then
the 36 spaces are not stored. This improves buffer usage
very significantly since in general short lines are Qquite
common. There 1is no limit to the number of lines in the
buffer other than the total size of the buffer.

Copyright (C) 1984 Intelligent Software Limited

—"9

"-‘-‘ﬂf‘ P -l" -

N

r

AN |

r—==

™

—




A o O

h

A_o» L_s

L. o

L. a

d_o

s L_a4 L_s

b..a

‘,.....—J L..-l

L_34

A .4

&

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 3

The buffer is arranged as a circular buffer so the start
of the text may be anywhere in the buffer, and the end of
the buffer may occur at any point 1in the text with the text
continuing again at the start of the buffer. This avoids
ever having to move the whole text up or down in the

buffer.

3.2 When the Buffer Becomes Full

When new text is entered into the buffer, either at the
end or into the middle of the buffer this clearly uses uDp
buffer space. Eventually the buffer may become [fuil. In
fact it 1is generally the case when using BASIC that tne
buffer is nearly full most of the time, as it contains
previous commands and so on which have scrolled off the

screen,

Whenever there are less than 100 bytes spare 1i1n the
buffer the editor displays a number on the right hand side
of the status line indicating the number of free bytes. As
characters are tyoed in, this number will get smaller until
it eventually reaches zero. This number 1is only displayed
when waiting for k2yboard input from the wuser, so for
example the number cannot be seen when BASIC 1s listing a
program even though the buffer may be full.

Wwhen the buffer is full and another character is typed
in (or written by the applications program), the editor has
to delete some of the existing text to make room. It

always deletes a whole line of text and it generally
deletes the first 1line since this will normally be the
oldest and least useful one. If the first line of the text
is displayed on the video page then it deletes the last
line instead, to avoid deleting text which is displayed.

If the editor buffer 1s very small or there are some
very long lines, then every line may be displayed at once,
so the editor has no choice but to delete a line which 1s
displayed. In this case the editor deletes the last line

unless the cursor is on the last line, 1in which case 1t
deletes the first line and scrolls the page up.

Note that because the editor buffer 1is circular,
deleting this 1line of text does not involve moving the
whole text up to fill the gap (at least not usually).

ET18/4 Copyright (C) 1984 Intelligent Software Limited




29-Nov-84 EXOS 2.0 - Editor Device Specification Page 4

3.3 Margins and the Ruler Line

Each 1line in the buffer has 1ts own individual left
margin position. When a new line is created it will Dbe
given a 1l€ft margin equal to ‘the current left margin
setting which can be displayed on a ruler line at the top
of the video page. There is also a right margin which 1s
displayed on the ruler line. In general text can only be
entered in between these margin settings although there 1S
the facility of temporarily releasing the margins.

3.4 Paragraphs

rines in the editor's buffer are grouped together 1n
paragraphs. When the user presses ENTER (or a CR 1s
received from the applications program) this marks the
current line as the end of a paragraph. It also moves the
cursor to the start of the next line which will be the
start of a new paragraph (and may have the side effect of
sending text to the applications program = See later).

If the user types a very long line then the editor will
split the line at a sensible point (using a process called
word wrap described in the next section) to give two lines.
The first line will be terminated by a soft carriage return
marker to indicate that it is not the end of a paragraph.
In this way long paragraphs can be built up.

There is no indication on the screen of where paragraphs
start and end but some of the editing functions operate on
paragraphs, and the paragraph is the basic unit for sending
text back to the applications program.

3.4 Word Wrap

Word wrap is the process which decides where to split a
line which is too long. When a character is typed outside
the margins (assuming that margins are not released) then
trhe editor searches back to find the start of the word
which contained that character and moves the whole of that
word onto the start of a new line.

This process 1is done with all text received from the
applications program as well as that typed at the keyboard
from the user. Thus BASIC listings are subject to word
wrap so keywords and variable names etc. will not be split
in half.

-~ * .. P S - = o~ - » - = * _ L - ™ - [ d v v = o=~ T‘:"I'I‘:"*HA



© o

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 5

B

3.5 Long Lines

W, Although a very long line which is typed in will be
split by word wrap, it is possible to create a long line by
inserting characters into the middle of a line, which will
push the rest of the line to the right. In this way 1t 1is

®-v P

Qb

displayed on the video page. This fact is marked by a red

} angle bracket (">") on the extreme right hand end of the
p line on the video page. This is an overflow marker.

' The part of the line which has gone off the page cannot
!

be accessed although it is remembered by the editor. The
line can only be accessed by reformatting it to bring 1t
back onto the page. There are various editing commands
which can do this described later on. '

3.6 Flashing Cursor

The EXOS video driver which the editor uses only
provides a static non-flashing cursor display, although
this can be turned on and off. The editor 1mplements a

flashing cursor by simply turning the video page's cursor

A .4 -3 _

} on and off reqularly while it is waiting for input from the
wt | user. It always ensures that the cursor is switched off

./  when it is doing any editing functions, since these can
9 | result in the cursor having to move all over the screen and
B it is rather messy if the cursor can be seen doing this.

{

The editor also switches the cursor off whenever 1t
returns to the applications program and 1t remains off when
the applications program 1s writing characters to the
editor. This results 1n a nice clean cursor display, where
the flashing cursor always means that the editor 1s waiting
for the user to type some 1nput.

| S

4. Writing to the Editor

s -3 tL_a

Any characters 1in the range 20h to 9Fh, written toO the
editor are regarded as printing characters and arte put 1into
the text buffer at the current cursor position and
displayed on the video page. They are subject to word wrap
as described above. '

| N

ET18/4 Copyright (C) 1984 Intelligent Software Limited

possible to create a line which is too long to be all

/
) o<




29-Nov-84 FXO0S 2.0 - Editor Device Specification Page 6

The editor will also interpret the following control

codes. All codes in the range 00h to 1Fh not mentioned

here are ignored.

00h (NUL) - Writes a null to video to check it is still OK.
09h (TAB) - Move to, or insert spaces to, next tab stop.

0OAh (LF) - Ignored. '

00a (CR) - Goes to start of new line (equivalent to CR-LF).
-8h (“X) - Set left margin at cursor column.

19K (“Y) - Clear to end of line.

1Ah (~“Z) - Clear whole buffer and screen and home cursor.

1Bh (ESC) - Starts escape sequence (see below)

The only escape Sseguence interpreted by the editor is to
position the cursor at arbitrary co-ordinates. This 1S
identical to the wvideo driver escape sequence for this
function and details <can be found in the video driver
specification. It ovositions the cursor at the specified
co-ordinates of the video page, regardless of which portion
of the editor's buffer is currently being displayed.

Codes in the range 0AOh to OFFh are interpreted exactly
as if they had been received from the keyboard. These
provide various editing functions and cursor movement.
They are described in detail in the section on editing
functions. ’

5. Reading From the Editor

When the editor receives a read character function call,
it examines the EXOS variable FLG_EDIT. This byte contains
a aeries of flags which control the response of the editor
to 41nis read character call. The editor's action will
first be described in general terms without reference to
the individual flags. The effect ol =acn flag will then be
described in detail.

5.1 Basic Editor Read Action

Assuming for now a typical setting of the flags 1n
FLG_EDIT, when the editor receives a read character call 1t
interprets this as a request to send a line of text back to

the applications program. It does not return a character
immediately but records the state of the flags and enters

its main editing loop-which provides the actual editing
facility to the user. It is only while in this loop that
fhe cursor on the video page will flash. A flashing cursor
rhus indicates that the editor is waiting for a key to be
pressed.

- ' . . P = 8 « Mmoo~ g Pk e YY) e AL bernnvrm T';‘Fﬂ{"ﬂa




TR e

—--teeadll

Vi o

..o

S .4 S -

L .o

.. 4

-

29-Nov-84 EXOS 2.0 - Editor Device Specification _ Page 7

This loop reads a character from the keyboard, responds
to it and then loops back for another one. This allows the
user to type in text which will be inserted 1into the

" editor's text buffer. and displayed on the video page, and

to carry out various editing functions. The details of the
editing functions are given later. There are two keys
which are of importance here - ESCAPE and ENTER.

If ESCAPE (ASCII code 01Bh) is received from the
keyboard then this character will immediately be returned
to the applications program as the response to the read
character call, regardless of the state of any of the
FLG_EDIT flags. This provides a way of interrupting a line

input operation.

If ENTER (ASCII code 0Dh) is pressed then this 1s a
command to the editor to begin sending text back to the
applications program. The details of how much text is sent
are determined by the flags and will be described below.
An internal editor flag is set to indicate that it is 1in
the process of sending text, and the first character is
returned to the applications program, When the
applications program makes another read character call the
internal flag 1is still set, so instead of entering the
editing loop, it simply returns the next character of the
requested text immediately. This continues until all the
required text has been sent at which time the internal flag
is cleared so the next read character call will again enter

the editing loop.

It is up to the applications program to recognize when
it has read all the characters to avoid re-starting a new
read operation. How to recognize this depends on the
setting of the editor flags and is described later.

Note that the editor flags are sampled once when the
first read character call is made and then not again until
all the text has been sent. Changing them in the meantime
will therefore have no effect on the read which is 1in
progress., If a write character call is mode while a read
is in progress then the internal flag is cleared so that

read will be aborted. This also applies if an special
function calls are made.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

4y



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 8

5.2

5.

5.

The Editor Read Flags in Detail

The assignment of bits in the FLG_EDIT EXOS variable is:

= MSB bit-7 = SEND NOW

o bit-6 = SEND ALL
o bit-5 = NO READ

| bit-4 - NO SOFT

| bit=-3 - NO PROMPT
~ bit-=2 - AUTO ERA
-~ bit-l - not used

- LSB bit-0 - not used

2.1 The SEND NOW Flag (bit-7)

If tnis flag 1s set then the editor will start returning
text 1mmediately, without reading from the keyboard at all.
If 1t 1s clear then the main editing loop will be entered
and no text will be returned until the user types ENTER.
In either case the amount of text returned 1s the same and
depends on the setting of the other flags.

2.2 The SEND ALL Flag (bit-6)

This 1s the main flag which determines how much text is
sent. If 1t 1s clear then the paragraph containing the
cursor will be sent. If 1t 1s set then the whole editor
buffer will be sent.

In the first case the applications program will be sent
the characters of the paragraph one by one terminated with
a CR and then an LF. This CR-LF can be wused by the
applications program to determine when to stop reading
(beware 1f NO SOFT 1is clear! - see below). The cursor will
be left on the first character of the next paragraph with a
new (empty) paragraph being created if that was the last
one.

If SEND ALL 1s set then the entire buffer will be sent.
This will 1nclude CR-LF sequences at least between each
paragraph (again see NO SOFT flag below) so this cannot be
used to indicate the end of the text, Instead, after the
last CR-LF has been sent (the last characters sent will
always be CR-LF), the next character read will produce a
.EOF (end of file) error. This error will only be received
for one character so the applications program must notice

1t and stop reading. If another character was to be read

then this would start the whole reading process again from
the start of the buffer.

f"‘ﬁ

Y ro Y -

i |

“ r N

Ay

A

r_’-*._

?‘.-. )

]




L e

L

pR—

.I----.

L .4 Ao . 4

L+ (L 3 L_o

L.

L .4

(.

L4

[_

.o L 4

29-Nov-84 EX0S 2.0 - Editor Device Specification  'Page 9

5§5.2.3 The NO READ Flag (bit=5)

If this flag is set then ENTER will not in fact return
any characters at all to the applications program. The
only way to get back to the applications program is thus to
press ESCAPE. Although no characters are returned, the
routine which selects which characters to send depending
on the flags, is still executed. Thus the cursor is moved
in the same way as if the text was returned. If SEND ALL
is clear then pressing ENTER will just move to the start of
the next paragraph, putting in a new line 1if it was at the
end of the buffer. This will make the editor behave rather
like a typewriter,

This flag controls the sending of soft carriage returns
and soft spaces. Soft carriage returns are those which
separate successive lines of a paragraph. Soft spaces are
those spaces which are inserted for justification, and also
the spaces before the left margin of a line.

If this flag is clear then soft spaces are returned as
normal ASCII spaces (20h) and soft carriage returns are
returned as normal CR-LF sequences., I1f the flag 1s set
then both of these are suppressed and no characters are
returned for them., '

Beware that if NO SOFT and SEND ALL are both clear then
there is no way for the applications program to determine
whether a CR-LF which it receives is the end of the
paragraph, in which case it should stop reading, or simply
the seperator between two lines of the paragraph, 1n which
case it should continue. Therefore this combination of

flags should be avoided - at least one of them should
always be set.

5.2.5 The NO PROMPT Flag (bit-3)

This flag 1is normally clear. If it 1s set then the
cursor position when the read operation was started 1is

remembered. When it comes to returning text, if the cursor
has not been moved out of the original paragraph, or to

before the remembered position in the current paragraph,
and if SEND ALL is clear, the the current paragraph will Dbe
sent back but starting from the character at the remembered

cursor position rather than the start.
If the cursor has been moved out of these bounds then

the whole paragraph will be returned as usual, or the whole
editor buffer 1f SEND ALL is set.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

ve ¥



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 10

This feature 1is used by BASIC when doing an INPUT
command. It prints the prompt and the does an editor read
with this flag set. When th=2 paragraph 1s sent to BASIC
the prompt will not be returned, just the response to 1it.

5.2.6 The AUTO ERA Flag (bit-2)

This flag 1s also normally clear. If 1t 1s set then,
if the wvery first character typo=sd at the keyboard 1s a
mrinting character (as opposed to an editing function or
cursor movement) than the current line will be cleared

b2 fore responding to the key.  This is provided mainly for
BASIC to allow commands such as RUN to b2 typed on top
of an existing line after editing a program. It may just

conceivably be of some use to other applications programs.

5.3 Typical Flag Combinations.

The use of these flags can be rather confusing so this
section discuses some examples of their use from IS-BASIC

and the built in word processor (WP). This covers most
useful combinations and certainly shows the use of each of
the flags.

5.3.1 BASIC reading a command line. Flags = 000101xx

When BASIC is reading a command line from the editor it
is expecting either an immediate mode command (such as RUN)
or a new line starting with a line number to by typed. In
eilther case it wants to read a single paragraph entered by
the user,. This might be newly typed by him or it might be
a line which already exists in the editor buffer which he
simply moves the cursor to and re-enters.

Clearly BASIC wants to wait for the user to type ENTER
so the SEND NOW flag 1s clear. Only one paragraph, rather
than the whole buffer is wanted so SEND ALL is clear and
BASIC wants to actually be sent the text so NO READ 1is
clear. BASIC is not interested in the breaks between lines

in the paragraph (since one command line can over flow onto
several screen lines).so NO SOFT 1s set. NO PROMPT 1is

clear and AUTO ERA is set (as explained above).




‘l-—u-—l‘

A4

L4 4

L ..« i __4 L1 J L -& b4

L«

29-Nov-84 EXOS 2.0 - Editor Device Specificatidn Page 1l

. 000110xx

.
H
R
Q
0
I

5.3.2 BASIC doing an input command.

When BASIC is doing an input command it also wants to
read in a single paragraph so the SEND NOW, SEND ALL, NO

READ and NO SOFT flags are all set the same as for reading
a command. In this case however BASIC will write out a

prompt and wants to read in just the response to that
prompt, rather than having the prompt at the start of the
paragraph which it recelves. To do this it sets the NO
PROMPT flag. The AUTO ERA flag 1s clear.

5.3.3 WP normal editing mode. Flags = 00lxx0xx

In normal editing mode the word processor wants to let
the user get on with his editing without data being sent to
the word processor. The SEND NOW flag is clear to allow
the user to do editing. The SEND ALL flag is clear and the
NO READ flag is set to ensure that no characters are
returned to the word processor when ENTER is pressed but
the cursor will be moved to the start of the next
paragraph. The NO SOFT and NO PROMPT flags are 1irrelevent
when NO READ is set, and the AUTO ERA flag is clear.

This will have the effect of allowing the user to move
all over his document, pressing ENTER and using any of the
editing features. Only when ESCAPE is pressed will the
word processor applications program be alerted. In fact
the eight function keys have the ESC code as the first code
in their programmed string so the word processor gets
alerted when they are pressed as well.

5.3.4 WP Printing a Document. Flags = 11000xxx

When the word processor is asked to print a document 1t
must read the whole of the editor's text buffer 1in order to
orint it. Also it wants to get the data immediately rather

than waiting for the user to press ENTER. To achieve this
SEND NOW and SEND ALL are both set. NO READ 1s of course
clear or no text would be sent and NO SOFT is clear so that
all spaces and soft carriage returns will be sent to ensure
that the formatting of the printed document 1is correct. NO

PROMPT igs clear. AUTO ERA does not matter because SEND NOW
is set so the user doesn't get a chance to press a key.

BT18/4 Copyright (C) 1984 Intelligent Software Limilted

;o]
ﬂ-' ..I



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 12

6.

Editing Functions

6.1

The editor provides many editing and word processing
features. These are carried out in response to the user
typing an —appropriate key on the keyboard, or by the
same code being written from the applications program. The
following sections describe each of the editing functions
1n some detail.

Some of the editing functions such as paragraph movement
and reforming paragraphs, require fairly complex 1internal
operations to be carried out. This often results 1in rather
strange behaviour of the screen display, involving
scrolling operations which might not be expected.

The four joystick directions and the INS, DEL and ERASE
Keys each have three different functions which are
explained below. These functions are obtained by using the
key alone, or with either the SHIFT or CTRL keys. In fact
the CTRL function can also be obtained by using the ALT
Key.

Cursor Movement (The Joystick)

Cursor movement is the most fundamental operation for a
full screen editor. On the Enterprise, cursor movement 1s
carried out with the joystick in conjunction with the SHIFT
and CTRL Kkeys. The autorepeat on the IJjoystick allows
continuous cursor movement by just holding the joystick 1n
one of its eight possible positions.

The cursor can be moved anywhere on the video page Dbut
cannot be moved off the page. If an attempt is made to
move it off the top or bottom of the page then the display
will scroll to bring more text from the buffer onto the
page. This scrolling will stop when the start or end of
the text 1s reached.

The cursor can be moved beyond the end of 1lines or
outside the margin settings without the text be ing
atfected. However when a character 1is typed, extra spaces
will be put in to fill up to the cursor position and word
wrap may occur if the cursor is outside the margins.

Although only the four orthogonal directions of cursor
movement are provided by the editor, diagonal movement 1is
still possible, This is because if the joystick is moved
to one of the diagonal positions, the keyboard driver
autorepeat will return the appropriate two joystick codes
alternately so the editor will execute them alternately.

"This 1s only useful for simple cursor movements, not for

the shifted and controlled movements.

s /o2 . I B W o~ A TAA DL Tk YY e Mmoo m *® ) ond b S

f"‘\

r-—-a-u-

N

rv..

Y




‘h—-—-—l—‘

29-N6§-84 EXOS 2.0 - Editor Device Specificatiqn ‘Pagel3

‘-‘*-.

The possible cursor movements and their codes are:

1 - . |
o ~ Joystick Movement Key Code - Function
UP 0BOh . - Cursor up line
T Shift-UP - 0Blh Cursor up page
- Ctrl-UP 0B2h . Cursor up paragraph
J DOWN 0B4h CurSor down line
Shift-DOWN 0BSh Cursor down page
Ctrl-DOWN 0B6h Cursor down paragraph
J LEFT 0B8h ' Cursor left character
Shift-LEFT O0B9h - Cursor to start of line
Ctrl-LEFT O0BAh Cursor left word

! RIGHT 0BCh ~ Cursor right character
“~ Shift-RIGHT 0BDh Cursor to end of line
Ctrl=-RIGHT O0BEh Cursor right word

6.1.1 Left and Right by Charaﬁter

d

The simple left and right movements move the cursor Dby
] one character left and right. There is no wrap around from
) one line to the next so if the cursor is at the extreme
.
-t

left or right of the video page then attempting to move it
further will have no effect.

6.1.2 Start and End of Line

Moving the joystick left or right with the SHIFT key
held down will move the cursor to the start or end of the
current line respectively. In this context the start of
the line 1is the first actual character in the line,
discounting any spaces up to the left margin of that line.
The end of the line is the last actual character 1in the
line discounting any trailing spaces which are not
represented in the buffer (although there may be spaces
which are in the buffer).

6.1.3 Left and Right by Word

Joystick left or right with the CTRL key held down moves
the cursor left or right by a word. The exact definition

of a worq is rather complex but is basically a string of
alphanumeric characters and a string of non-alphanumeric

AW, characters in either order. Moving left or right by a word
d does wrap around between lines.

(.21 31 321 b3 L.}

“ ET18/4 Copyright (C) 1984 Intelligent Software Limited




29-Nov-84 EXOS 2.0 - Editor Device Specification Page 14

6.1.4 Up and Down by Line T

. . .
The straightforward joystick up or down operation moves
the cursor— up or down by one line, The cursor always i
remains in the same column position. If the cursor is on

the top or bottom line of ths video page then, assuming

that there are more lines in the buffer, the video page

will be scrolled appropriately to bring another line onto i
the display. If the cursor is on the first or last line of ot
the text then nothing will happen. | '

6.1.5 Up and Down by Page

Moving the joystick up with the SHIFT key held down will . L
move the cursor up by a page. If the cursor 1s on the top
line of the video page then the page will be scrolled one
less lines than the height of the page so that the old top
line 1is now the bottom line and the rest of the video page
is new lines from the buffer, I1f there are insufficient
lines 1in the buffer then the scrolling will stop when the

first 1line of text is on the top line of the video page.
If the cursor was not at the top of the page then it 1s

r -

r—

moved to the top line of the page. r
R ¢
For moving down by a page the situation 1is analogous, '
with the cursor being moved to the bottom line of the page o
unless it is there already 1in wich case the page will be L
scrolled up. In either case the cursor will be left on the
same column as it started on.
| ~
6.1.6 Up and Down by Paragraph
Moving up and down by paragraph {(by using CTRL) 13
rather different from other up and down movements. In -
moving up by a paragraph the cursor will be put on the L

first character of the current paragraph, unless 1t 1s
already on the first character in which case i1t will be put
on the first character of the previous paragraph. The
video page will of course be scrolled appropriately to =
ensure that the cursor remains on the screen. '

Moving down by a paragraph always moves the cursor to
the start of the next paragraph unless it is already in the
last paragraph in which case it wxll be left at the end of

that paragraph.

»7T™IR/A CArntriemhes (Y 004 TroéEalTYsmarnét: CAfbtrnvrnan T imdibtaA



| B - A4 A B8 B -

W |

t 4

P L*J LN—J L4

29-Nov-84 EXO0S 2.0 - Editor.Device‘Specification Page 15

-

6.2 Inserting and Insert Mode Control (The INS key)

The insert key has three. separate functions which are:

INS OA8h - Insert a space
Shift-INS OA9h - Insert a new lilne
Ctrl-INS 0AAh - Toggle insert/overwrite mode

6.2.1 Inserting Spaces and Lines

When the INS key is used on its own it simply inserts a

space character before the cursor position and leaves the

.. cursor on this space. It is useful for inserting a few

characters while in overwrite mode (see below). This 1s

done simply by inserting the correct number of spaces and
then over-typing them with the required characters.

When the INS key is used with the SHIFT key, the current
line will be split with a hard carriage return (end of

paragraph marker) at the cursor position. If the cursor 1s
at the start or end of a line then this will have the

effect of inserting a blank line.

6.2.2 Toggle Insert and Overwrite Mode

When the INS key is used with the CTRL key, 1t toggles
between insert and overwrite mode, the 1initial default
being overwrite mode. The current mode is indicated by the

cursor which is changed to a different character depending
on the mode. For overwrite mode it is character number 14

(a rectangular block) and for insert mode 1t ls character
number 30 (a left pointing arrow).

In overwrite mode if a character is typed when there 1s
already a character at the cursor position then the old
character will be replaced by the new one. In insert mode
the new character will be inserted before the old character
and the old character along with the rest of the line will

be moved one character to the right.

Whether overwrite or insert mode 1is selected also

affects some details to do with word wrapping and splitting
lines in the middle of the buffer.

ET18/4 Copyright (C) 1984 Intelligent Software Limited f}ﬁ;



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 16

6.3 Deleting and Erasing (The DEL and ERASE keys)

The DEL and ERASE keys have very similar functions, both
delete characters from the buffer. Basically the DEL key
goes rightwards while the ERASE key goes leftwards. Each
Key has three functions which correspond to the three types
of horizontal cursor movement: '

DEL 0AOh Delete character right
Shift-DEL OAlh Delete line right
Ctrl-DEL 0A2h Delete word right
ER ASE O0A4h Erase character left
Shift-ERASE O0AS5h Erase line left
Ctrl-ERASE O0A6h - Erase word left

6.3.1 Deleting And Erasing Characters

If used without the SHIFT or CTRL keys then DEL and
ERASE each delete a single character and move the rest of
the 1line 1left +to £fill up the gap. DEL deletes the
character under the cursor leaving the cursor in the same
position, while ERASE deletes the character to the left of
the cursor and then moves the cursor onto the previous
character.

Both functions wrap around between lines and thus can be
used to join lines together. If the cursor is on the first
character of a line then ERASE will join this line to the
previous line. 'The line separator counts as one character
as far as deletion goes. DEL will join the current line to
the next one 1f it is at the end of a line.

6.3.2 Deleting and Erasing Lines

When wused with SHIFT, the ERASE and DEL keys delete to
the start and end of the current 1line respectively. If
already at the start or end of the line then nothing will
be done, these functions do not join lines together.

6.3.3 Deieting and Erasing Words

When DEL and ERASE are used with the CTRL key they
ael~te one word, using the same definition of a word as
cursor movement. The deletion 1s done by repeatedly
deleting characters until the end of the word is reached.
These functions will 3join lines together and for this

purpos2 the line separator counts as a word. As usual DEL

deletes rightwards and ERASE deletes loftwards.

P . -
i :

Shaate

Y

- -

~Y

Pr--l-.

LA

A

]
(' r7 "?
~

.




29-Nov-84

| .
i " 6.4 The TAB key

EXOS 2.0 - Editor Device Specificéﬁionj Page 17

The TAB key (key code 09h) moves the cursor to the next
tab stop, or to the start of the next line if there are no

o more tab stops on this line.
be seen on the ruler line if it is displayed.

The current TAB settings can

i In overwrite mode the cursor is simply moved to the next

tab stop. In insert mode the next tab stop is reached Dby
‘ inserting spaces and moving any more text on the line to
% the right. When moving to the start of a new line 1in

and then a new

insert mode, spaces will be 1

nserted up to the right margin

line will be inserted (not an end of

The more complex editing functions, and particularly the
word processor type functions are carried out by using the
eight function keys in conjunction with CTRL or ALT. This

gives a possible 16 editing functions although only 14 of

These 14 editing functions are listed here, along with

and each one is then described 1n more

Reform paragraph
Centre line
Toggle tab
Set left margin

Release margilns

Move paragraph up
Change line colour

Justify paragraph
Remove all tab stops

- Toggle ruler line display

Set right margin

Reset margins and tabs
Move paragraph down
Change paragraph colour

] paragraph marker).
“
3 6.5 The Editing Function Keys
9
|
ol
} rhese are utilised because function key 8 is not used.
)
By their key codes
o detail in the following sections.
| Ctrl-F2 OFlh
- Ctrl-F3 0F2h
o Ctrl-F4 OF3h
1 Ctrl-F5 0F4h
-l Ctrl-F6 0FS5h
Ctrl-F7 OF6h
_I Alt-Fl 0F8h
Alt-F2 0F9h
. Alt-F3 0 FAh
\ Alt-F4 0 FBh
J Alt-F5 0FCh
Alt-F6 0 FDh
! Alt-F7 OFEhQ

ET18/4

Copyright (C) 1984 Intelligent Software Limited

£t
0 ’l



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 18

6.5.1 Reform and Justify Paragraph (Ctrl-Fl and Alt-Fl)
o
Reform and justify paragraph are very similar functions,

1in fact Jjustify does exactly the same as reform but also
justifies. ~Both operate on the paragraph containing the
cursor, and leave the cursor on the start of the next
paragravh. This means that pressing one of these keys
repeatedly will reform (or justify) each paragraph of a
document 1in turn, without need for using the joystick.

Reform paragraph moves to the start of the paragraph and
then walks through the paragraph to the end. As it goes it
adjusts the left margin of each line to be equal to the
current left margin, removes any soft spaces (left over
from previous justification) and word wraps each 1line to
the current right margin, Jjoining lines together where

possible.

The result 1s that the new paragraph appears exactly as
1t would 1f all the characters of the paragraph were newly
typed 1n, so any untidy sections resulting from other
editing operations will be reformed.

Justify does exactly the same as reform but it also
inserts soft spaces into each line of the paragraph except

the last one, to ensure that each line finishes exactly on
the right margin. 4

6§.5.2 Centre Line (Ctrl-F2)

Centre 1line is a fairly simple function which operates

on a single 1line, not a whole paragranh. It 1nserts }
sufficient spaces before the line to centre it betweesn the 4
current margins. Leading and trailing spaces are first |

removed to ensure that they are not includzd 1in the
centring. The cursor is left on the star% of the line. 1If
the 1line 1s too long to fit between the maragin= than it
willl be left so that it starts at the left margin oosition.

6.5.3 Toggle Ruler Line Display (Alt-F3)

The ruler 1line display is a red 1line which <can be ; '
displayed on the very top line of the video page. It v
indicates where the left  and right margins are set and also f
the positions of any tab stops. ' i iﬂ7




29-Nov-84 EXOS 2.0 - Editor Device_Specificatiop " Page 19

1eft margin is indicated by an "L" and tpe right

s L mar‘g?i birean "Rﬂ.g Tab stops are marked by a vert__lgal bar
j Kﬂ) and other character positions betwegn the margins are
| indicated by dashes. Also if the margins are released (see
below) then an asterisk will be displayed 1n the extreme

| VY
a !
’-Jo
1o
e 3
r
o 2
o1
oJ
(o
o
O
W
’-l-
t
e
O
o
O
()
r
oS
®
p
=
'....J
®
"
'—J
P
o3
®
&

is function key simply toggles the ruler line 'd}splay
on Egd off, the de%ault being off. All the facilities of
tab stops and margins can be used regardless of whether the
ruler line is displayed or not, but it can get confu51ng.1f
it is not. The built in word processor sets the ruler line

display on for the user.

A48

A.d

A8

6.5.4 Toggle and Clear Tabs (Ctrl-F3 and Alt-F2)

The toggle tab function sets a tab stop at the current
cursor column, or removes it if one was alrea@y set. Tab
stops can only be set between the current margin positions,
although when the margins are moved tab stops which are
outside them are remembered and restored when the margilns
are moved back out. It is advisable to have the ruler line

displayed when using this function.

R

L .2

.J * All tab stops can be removed by a_single function kgy
S press, including those which are outside the current margin
9 settings (and thus not visible on the ruler line). This 1s
useful to get rid of the standard tabs before setting up
v your own set.
B When an editor channel is opened, the tab stops are sgt
- up by default to every eilght character positions since Fhls
\ corresponds to the standard setting for tabs on machines
i with fixed tab stops.
=
.J 6.5.5 Set Left and Right Margins (Ctrl-F4 and Alt-F4)
The left and right margins define what portion of the
" video page is used for entering and displaying text. When
> an editor channel is opened the margins are initialised to
the widest possible setting. The user can set new margiln
9 postions by putting the cursor on the desired column and
B pressing the appropriate function key.
The right margin can be in any column up to two less
T than the video page width. Thus for a 40 column display
-~ (BASIC's default) the right margin can be any column up to
38. The left margin can be in any column from 1 up to one
Y less than the right margin column. The default margin
- settings for BASIC's default channel are thus: left margin
at column 1, right margin at column 38.
-
—

. L T
. ET18/4 Copyright (C) 1984 Tntelligent Software Limited T”{q



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 20

An attempt to set an illegal margin position will result
in both margins being reset to their default settings. The s
applications program can use these codes to set margin
positions but there is also a special function call which
can be used to set the margins and also to read their
current settings. This is described later.

| A

6.5.6 Release Margins (Ctrl-F5)

This is in fact a toggle action, it releases margins on the

As mentioned before there is a margin release function. r
|
first opress and the re-enables them when it 1is pressed :

agaln. When margins are rrlmas>d the margins remailn .

displayed on the ruler line and an asterisk 15 displayed on =

the extreme right hand end. | L
When margins are released, all operations which |

e

normally use the margin settings us2 the drnfault settings
instead. Thus word wrapping will occur at the last-but-two
column rather than the right margin and characters may be

. ; . r

typed 1n outside the margins. |

.\

- r

: '

6.5.7 Reset Margins and Tabs (Alt-F5) | 3
This function key resets the margin settings to their -
default wvalues and sets up the default positions of tab {
stops (every elght columns). | - -

6.5.8 Move Paragraph Up and Down (Ctrl-F6 and Alt-F6)

Y

These functions can be used tc move a paragraph up or
down. Each key press will move the paragraph up or down by
one line, wunless it is already at the start or end of the -
buifer. To move a paragraph by more than one line this key
should be pressed repeatedly until the paragraph reaches
the desired position.

The paragraph to be moved is defined to start on the .
current cursor line, and end at the next end of paragraph
marker. Thus to move a complete paragraph the cursor
should first be positioned on the first 1line of the
paragraph. This definition of a paragraph has to be used
to ensure that one paragraph can be moved through another
correctly.

Y

-y

~ Although not essential it is useful to use the "colour 7/
oparagraph" function before doing a series of moves up or
down. This highlights the paragraph to make it easy to see

~what 1s going on, and also puts the cursor at the start so

"that the whole paragraph will be moved. | v

r‘-ﬂ-




A& B B Bcred Watl

| S

d .4 Lk o L I L .S

L -4 L _a

i -

L _4

(32 4.4 L_J

1.

29-Nov-84 | EXOS 2.0 - Editor Device Specificaﬁién‘ Page 21

6.5.9 Colour Line and Paragraph (Ctrl-F7 and Alt-F7)

These functions can be used to change the colour of the
text. The colour line function just affects the current
line whereas the colour paragraph function affects the
entire current paragraph, and has the side effect of moving
the cursor to the start of the paragraph ready for

paragraph moving.

Each change colour operation changes the colour to the
next one of four posible colour pairs, cycling back to tnae
first pair after the fourth. A colour vpalr specifies which
paper and ink palette colour the the video driver will use
for the text. The four colour pairs are (in order): (0,1),
(2,3), (4,5), (6,7), with (0,1) being the default (normally

green on black).

Note that if the editor is using a hardware texXxt page
then c¢olour pairs (4,5) and (6,7) will in fact appear as
pairs (0,1) and (2,3) since the video driver only sSupports
two colour pairs in this mode.

Special Punction Calls

7.1 Setting Margin Positions

The margin positions can be set by the wuser or the
applications program by using a function key. However a
more general way for the applications program to set the
margin positions is provided as a special function call.

The parameters for this call are:

Channel number (l...255)

QEMARG (=24) (Special function code)
New right margin column

New left margin column

Parameters:

Status
Right margin column

Left margin column

Returns:

MOy BWOW)

The column numbers can be from 1 up to the width of the

(.3

(.-

video page, with  the usual restrictions on valid margin
settings. There are two special values which can be gilven
for the new left and right margin parameters. If either of
them is OFFh then the current cursor column will be used
for that margin. If either of them is zero then that
margin setting will be unchanged. Thus the current margin
settings can be read without affecting them, simply Dby

setting both D and E to zero.

-

BT18/4

Copyright (C) 1934 Intelligent Software Limited



29-Nov-84 EXOS 2.0 - Editor Device Specification Page 22

7.2 Loading and Saving Document Files

Two special function calls are provided for loading and
saving document files. The format of saved documents fits
in with the standard EXOS file module format which 1s
described in the EXOS kernel specification. The module
type for editor document files 1s S$SEDIT (=8) and the
module header contains no other information.

The simplest of the two functions is saving. The call
must specify a channel number down which the document 1s to
> saved and this channel must be opened before making the
call. The editor will write a suitable module header
followed by the data of the document. It does not write
out an end of file header at the end, since the application
orogram may want to create a multi-module file.

The details of this special function call are:

Editor channel number (l...255)
Channel number to write to (l...255)

Parameters: A
B

Returns: A Status

Loading 1is slightly more complex. Be fore making the
special function call, the file to load from must have been
opened, and a file header with type SSEDIT must have been
read 1n. The editor is then called, giving the channel
number to load from. It first clears all the text out of
the editor buffer and then loads the new document in from .,
the file. I+t loads line by line and checks that each line
is wvalid before going on to the next, If it £finds an
invalid 1line or the buffer becomes full then 1t stops
loading and returns an error (.EDINV or .EDBUF). All
previous lines in the buffer will be wvalid. The cursor
will be left at the start of the document.

The parameters for the loading special function call
are: -

Editor channel number (l...255)
Channel number to load from (l...255)

Parameters:

A
B
A

Returns: = Status

A saved document contains the characters of the text and .
also information about paragraph structure, the left margin /-
oosition for each line, and the colour of each line. Thus
if a document is saved and loaded into an editor channel
with the same sized buffer and video page, then it will re-

load exactly as it was before being saved.




6. adl

1 294Nov-84 . EXOS 2.0 - Editor Device SpéCification P age 2}’

4
) Information about editor options and so on is not s§ved
with the file so any tab settings, current margln settings

and so on will have to be set up again when the file 1s
loaded.

A document can be loaded into a different sized editor
channel but may have to have some lines adjusted 1if their
left margin setting is invalid. Also it may not all fit
into the buffer if the new buffer 1s smaller.

A G- .o | S

8. Error Handling

.4

{ The only error which can be generated inside the editor
\ during normal operation (apart from loading and saving
| documents, opening channels, 1illegal special function
calls, and unknown escape sequences) 1s .VCWRS which 1is
returned if an invalid cursor position is given 1in the
cursor positioning escape sequence.

However, since the editor is communicating with a video
page and a keyboard channel, 1t can get errors from these
channels. Generally an error from one of these channels
) means that the channel is misbehaving 1n some way. For

example if someone has re-directed the editor's video
channel to a different device, or even closed it then the
editor will get errors from its video channel.

If an error does come from one of these channels then
the editor returns either .EKEY or .EVID error code to the
applications program. It also remembers that this error

\ occurred and whenever it is next called, with any EXOS
call, it checks the channel (by writing a null to the video
or reading status from the keyboard) to see 1if 1t 1is
basically working. If it is working then it clears the
error flag and carries on normally. If it is not working
then it returns the appropriate error code (.EKEY or .EVID)
to the user without carrying out the function call.

4.3 L.+ .3 €_2 6.2 Lo

1 This procedure ensures that the applications program can
- tell when the editor is having trouble with its secondary
channels and attempt to put things right. This 1s how
" BASIC manages to recover if the editor's video channel 1is
- ‘closed. BASIC discovers this and re-opens it agailn.
4 Another feature is that if a NULL (ASCII code 0) 1is
_J written to the editor, instead of just being ignored, it 1s
written directly to the video page, which will ignore 1it.
. Tpis provides a way to 'poke' the editor to check if 1its
| video channel is still there, without having any effect on
- the editor's data.

"

ET18/4 Copyright (C) 1984 Intelligent Software Limited




29-Nov-84 EXOS 2.0 - Editor Device Specification  Page 24

9. Quick Reference Summary

9.1 EXOS Calls

r
OPEN/CREATE CHANNEL - Treated identically. Supports -
multiple channels. Device name "EDITOR:". ‘
Filename and unit number 1ignored. EXOS -
variables VID_EDIT, KEY _EDIT, BUF_EDIT must \
be set before open.
-
CLOSE/DESTROY CHANNEL - Treated 1dentically. L
READ CHARACTER/BLOCK - Returns characters from buffer .
after allowing user to do editing. Detalls i
controlled by FLG EDIT EXOS variable. \
WRITE CHARACTER/BLOCK - Printing characters put in buffer

and displayed. Responds to some control

codes and ESC=. Some codes above 0AOh do
editing functions.

7

READ STATUS - Returns C=0 if a read character call
would return character immediately without
allowing user a chance to edit. Returns C=l i‘f
otherwise, or C=0FFh if just finished a SEND ™|
ALL. |
-
SET STATUS | - Not_supported. L
SPECIAL FUNCTION - QEMARG = 24 Set and read margins. —~
@E@CHLD = 25 Load document file. i
@@CHSV = 26 Save document file. ,nﬂL“
-
(
[
9.2 EXOS Variables
-
VID _EDIT - Channel number of video page. L
KEY EDIT - Channel number of keyboard channel.
BUF EDIT - Buffer size in multiples of 256 bytes. -
{
FLG_EDIT - Flags to control reading from editor. L

b7 - SEND NOW
b6 = SEND ALL
b5 = NO READ
b4 - NO SOFT
b3 - NO PROMPT
b2 - AUTO ERA
b0 & bl - Not used.

A |

~

., —-’
ey, L]
..___h -

+4+++++++++ END OF DOCUMENT ++++++++++ ///
\\




	ET16-2_EXOS_20_Printer_Driver_Specificaton~01
	ET18-4_EXOS_20_Editor_Device_Specification~01
	ET18-4_EXOS_20_Editor_Device_Specification~02
	ET18-4_EXOS_20_Editor_Device_Specification~03
	ET18-4_EXOS_20_Editor_Device_Specification~04
	ET18-4_EXOS_20_Editor_Device_Specification~05
	ET18-4_EXOS_20_Editor_Device_Specification~06
	ET18-4_EXOS_20_Editor_Device_Specification~07
	ET18-4_EXOS_20_Editor_Device_Specification~08
	ET18-4_EXOS_20_Editor_Device_Specification~09
	ET18-4_EXOS_20_Editor_Device_Specification~10
	ET18-4_EXOS_20_Editor_Device_Specification~11
	ET18-4_EXOS_20_Editor_Device_Specification~12
	ET18-4_EXOS_20_Editor_Device_Specification~13
	ET18-4_EXOS_20_Editor_Device_Specification~14
	ET18-4_EXOS_20_Editor_Device_Specification~15
	ET18-4_EXOS_20_Editor_Device_Specification~16
	ET18-4_EXOS_20_Editor_Device_Specification~17
	ET18-4_EXOS_20_Editor_Device_Specification~18
	ET18-4_EXOS_20_Editor_Device_Specification~19
	ET18-4_EXOS_20_Editor_Device_Specification~20
	ET18-4_EXOS_20_Editor_Device_Specification~21
	ET18-4_EXOS_20_Editor_Device_Specification~22
	ET18-4_EXOS_20_Editor_Device_Specification~23
	ET18-4_EXOS_20_Editor_Device_Specification~24

