L_J

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 1

1. Introduction

The serial interface and network are provided as two

separate EXOS device drivers as far as the user 1s
concerned, wilth device names "SERIAL:" and "NET: "
respectively. However since they share the same hardware
only one of the devices can be supported at a time. SO 1f
the user wishes to open a channel to the serial device he
must first close any channels open to the network, and vice

versa.

Only one serial channel may exist at a time, while any

number of channels may be opened to the network device
provided there is sufficient RAM for the 512 bytes of
buffer for each channel. All channels opened to the

network or the serial device support both input and output.

2. Hardware

The serial/network hardware consists of two outputs and

two inputs. The outputs are the bottom two bits of an
output port (port 0B7h) as below. The other bits of this

output port are not used.

b0 - DATA OUT
bl - STATUS OUT

Each of these outputs is connected to an open collector

inverter with a pullup resistor. Thus for example setting

bit 1 of this port will pull the STATUS OUT line low.
Clearing this bit will allow the STATUS OUT line to float
high unless any other connected machine is pulling it low.

The two inputs are available as bits of a general

purpose 1nput vort. The other bits are used for cassette

inputs and various other things. The port number 1is 0Bé6h
and the relevant bits are:

b4 - DATA IN

For use as a serial interface these inputs and outputs

are used separately to provide half duplex communication

(data can be sent either way but only one way at a time).

For use as a network the STATUS IN and STATUS OUT lines are

joined together, as are DATA OUT and DATA IN.

NOTE: Throughout this document the signal levels referred to

ET15/6

are the actual levels on the external lines. On the
Enterprise, both 1inputs and outputs are inverted
between these external lines and the appropriate bits
of the ports, so the actual values of the bits will be

clear for a high line and set for a low line.

Copyright (C) 1984 Intelligent Software Limited

.

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 2

3.

Serial Device

3.1 Low=-level Operation

The serial device uses five wires - DATA IN, DATA OUT,
STATUS 1IN, STATUS OUT and REF (which may be used as an
offset signal reference instead of the 0 Volt GROUND line).
This allows independent handshaking on input and output.
The device supports both read and write EXOS calls. When
1t is called with a "read character" function call it sets
the STATUS OUT line high (it is normally held low). This
signals the sending device that 1t can send a character.
It then monitors the DATA IN line (which is also normally
low) until 1t goes high signifying a start bit. The bits
of the character can then be read 1in, possibly with a
parity bit 1f that 1s selected (see later).

The serial driver handles a small buffer for incoming
characters. After one character has been read, ¢the DATA
line 1s monitored for a short time to see 1f the sending
machine has any more to transmit. If another character 1is
sent, 1t will be read in and buffered. Up to sixteen
ciaracters may be read and stored i1f they are immediately
avallable. Once th2 buffer 1s filled, or 1f no further
start bit 1s detected within the tim2out period, the STATUS
OUT 1line 1s pulled low again preparatory to returning to
the user program. However, some devices are rather slow in
responding to handshaking lines, so the DATA IN 1line |is
checked for a short time afterwards to ensure that no more
characters are being sent. Any spurious characters which
are receilived can be buffered. (there is an additional eight-
byte overflow 1n case the main buffer is full). Stored
characters: are supplied to the user one at a ¢time when
"read character" 1s called, so this buffering 1S
transparent.,

"Write character" 1s simpler than read character since
therea 1s no problem of the other end of the connection
misbzhaving (1e sending extra characters). To send a
character the serial driver monitors. the STATUS IN 1line
until 1t is high (which it may be already if the receiver
is ready). Then the DATA OUT line is changed from its
gquiescent low level to high for the start bit. The bits of
the data are then sent, followed by a parity bit (if parity
ls selected) and then the required number of stop bits
(DATA OUT Low).

-

"

=N

$-xY -y N

F 9

e

-9

Y

re-Y o oy

W w -all s

- P

& -J

4 -2 RS

.o L_J L_o

\.s

[S

(. s L.as

(.*-‘J (.,

p—_—

L

23-Nov-84 EXOS 2.0 - Serial/Network Driver = Page 3

3.2 Use of the Serial Device

3.2.1 Read and Write Instructions

The serial device supports the normal EXOS read and
write instructions for single_characters or blocks. Data
is not interpreted in any way, SO machine code can be sent

just as easily as ASCII text.

3.2.2 Baud Rate Selection

The EXOS variable BAUD SER governs the baud rate, which
applies both to 1input and output. Before opening the
serial channel the user should set it to the approoriate
value for the required rate, according to the followlng

codes:

s 0 => 50 baud 1 => 75 baud

2 => 110 baud 3 => 134.5 baud

4 => 150 baud 5 => 200 baud

6 => 300 baud 7 => 600 baud

8 => 1200 baud 9 => 1800 baud

10 => 2400 baud 11 => 3600 baud

12 => 4800 baud 13 => 7200 baud

14 => 9600 baud 15 => 9600 baud
o The default setting is 15 (9600 baud). Numbers greater
. | than 15 are reduced modulo 16 before interpretation.

3.2.3 Word Format Selection

_The_rEXOS variable FORM SER, defines the word format
which is used for both input and output. Certaln bits are
interpreted as follows:

b0 - Number of data bits: Clear => 8 bits
Set => 7 bits

bl - Parity enable. Clear for no parity.
b2 - Parity select (Ignored if b2 is clear).
Clear => even parity

Set => odd parity

b3 - Number of stop bits: Clear => two stop Dbits
Set => one stop bit

The default setting is zero which selects 8 data bits,
no parity and two stop bits.

Note that the data bits are sent least significant

first, and if 7 data bits are selected then bits 0 to 6 of

" the byte will be sent and bit 7 will be ignored. On
reception bit 7 will be cleared.

ET15/6 Copyright (C) 1984 Intelligent Software Limited

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 4 :

4. Network Device

4.1 Data Transaction Protocols ' L
The notwork can be used in two modes: directed and -

. : r
hroadcast. In direct2d mode, one machine sends data to a :
second machine and all othear machines 1ignore 1t. In {
broadcast mode, one machinz s~nds data to all the other
machines at once. Each machine on the network 18 r
identified with a unigue address in the range 1 to 32. {_

Each Dblock that is sent consists of a hcader which may .
or may not be followed by a block of data bytes. The :

neader includes a synchronisation pattern, th2 source and
é~stination addresses and a type byte, of which the latter
contains a flag determining wheth=2r any data bytes are to C
follow. In every header there is also a count of the ¢ b
aumb>r of data bytes in the block, although this is ignored
17 th2 tyoe byte specifies that no data at all will be
sent. -

-_._..'ﬁ

et |

4.1.1 Broadcast Protocol

The header of a block which is being broadcast contains ¥
a destination address of zero. The block will be received R
by all machines which are listening and there is no method
of determining whether it was read correctly or not. r
This lack of handshaking introduces problems if some of ¢
the machines had interrupts disabled at the time of the ~
broadcast, and thus arrive at the network interrupt handler 1

once transmission has already started, or even after it has -
finished. In order to avoid possible confusion brought on J
by receiving only part of a block, the destination machines
check for the synchronisation pattern which is supplied 1in
the block header. The header consists of a repeating four-
pyte block, which continues for long enough to give the r
receiver time to be ready in most cases while obviously

Y

being kept reasonably short in order to save time. -
| _
¢
4.1.2 Directed Data Protocol

[g
: ¢
As Directed Data 1s Qestlned for just one machine, the L

sending machine can wait for acknowledgement in order to
ensure that the destination is listening, and to confirm -
that the data block is received without error. L

—- M

| — | W

. -8

N -8

& - &

A .S

Lo L _Js

L. o

23-Nov-84 EXOS 2.0 - Serial/Network Driver QPageS

When a computer reads a block header which has 1its own
number as the destination address, and is prepared to
accept the block (see later), then it sends back an
acknowledgement to the source machine. This is simply a
signal on the DATA line to show that it 1s ready to
receive; the absence of the signal within a given time
(about 4 bit periods at the selected baud rate) 1s

interpreted by the source machinz as an error.

If any data bytes are to be sent, these are transmitted
once the header has been acknowledged. After tha complete
data block has been received, the destination machine must
carry out the checksum calculation and either confirm the
data by sending another acknowledgement signal, oOr reject

it by not responding.

Error Response

-—

When a destination machine finds an error 1t returns
immediately from the network 1lnterrupt routine without
setting any interrupt flags ,((see later). The source
machine, when it finds no acknowledgement signal after
sending a header or a data block, retries as follows:

l. Release network *

2. Wait for 1long random delay, of the order of a
quarter of a second. -

3. Try to gain control of network and send again

* Note: 1t 18 extremely important that under no
circumstances should an error occur which causes
a machine to hang irretrievably while it 1s 1in
control of the network, as this would also hang
the network itself and thus any other machlnes
which are trying to use it. Any time a machilne 1s
waiting indefinitely for a signal on the network
lines, pressing the STOP key will regain user

control.

4.1.3 Accepting Data Blocks

A machine is only prepared to receive transactions <from
another computer on the network if there is a suitable
channel open to the network driver:

ET15/6 Copyright (C) 1984 Intelligent Software Limited

)y

73=No"7-84 EXOS 2.0 - Serial/Network Driver Page 6 .

When a channel is opened by the user a remote address L
~unmb2r is given as the unit number. If this 1s zero then
bhlocks will be accepted from anywhere. If it 1s non-zero ,~ -

then only blocks from that specific network address will be
accepted on this channel, any number of such non-zero
address channels may b2 opened provided they all - have
diffarent addresses. |

N

If a non-specific channel 1s 6pened it will only receive
data from machines which are not explicitly served by an
individual channel. Only one non-specific channel may be

open at a time.

Y

Regta
[

4.2 Low-level Network Operation

4.2.1 Hardware Connections - L

The network driver is rather more complicated than the
serial interface driver because it has to include protocols
to avoid <collisions. It uses the same hardware as the
serial driver. All machines on the network are joined by
three wires: GROUND, DATA and STATUS. On each machine the
DATA 1line is connected to both DATA OUT and DATA 1IN, and
the STATUS line is connected to both STATUS OUT and STATUS
IN. This allows the machine to pull either line low (the
outputs are open collector) and also to monitor the level

on each line.

A, §

~

The STATUS 1IN line is also connected to the external
interrupt input so the status line going low can trigger an
interrupt. This is how the machine can respond to data

r L

""
sent down the network asynchronously. {
.

§

4.2.2 Obtaining Control of the Network L

When a machine wishes to send data to another machine, ~

or to broadcast it, it must first get control of the l
network. Only one machine can be in control of the network
at a time and the protocol used for obtaining control is

designed to ensure that collisions (two machines taking
control at the same time) do not occur. The penalty for
this 1is a slight loss of speed and a priority ordering of

machines on the network.

- -

There is a timing constant C defined, which corresponds
to a delay of the order of one millisecond. When a machine
wants control of the network it must follow this procedure:

g

1. Both STATUS OUT and DATA OUT should be left high .-
whenever this machine does not have control of
the network.

2. If the STATUS line is high go to step 4

) Y

B e ndl

- —

B

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 7

3. Wait wuntil the STATUS line is high and remains
High for a period of RND*C where RND is a random
number in the range 1 to 16. If the STATUS line
does not remain high for the required time then
repeat this step with a new random number.

4. Pull the STATUS linz low.

5. Wait for a period of C*ADDR where ADDR 1s the
address of this machine on the networXk,
constantly monitoring the DATA line. If DATA
goes low for any time during this interval then
release the STATUS line (set it high again) and
return to step 3.

S. Pull the DATA line low and then proceed to send
the block header (see later).

Throughout a network transmission, lnterrupts are
disabled because of the timing considerations.

4.2.3 Attracting Attention - Protocol

Once a machine has secured 1itself control of the
network, it can start the transmission of the data block.

First of.all, it has to attract the attention of 1its
intended audience. This is done by repeatedly sending a

header consisting of a synchronisation byte, the
destination and source addresses of this block and a type
byte. The bytes are sent in the order

sync/dest/source/type/sync.... and are terminated with the
ones complement of the dest byte in the position oI the
next sync byte. The format of these bytes 1s as follows:

Machine address bytes

The destination address 1s the number of the
machine on the network to which this block is belng
sent; 1f it is zero then it indicates that it 1s a
broadcast block, which all machines should recelve,
The source address is the number of the machine which

is sending the block.
Byte format:

b0..b5 = machine address: 1 to 32, or 0 for broadcast
(0 only valid as a destination address)

b6 - source/destination selection: 0 => addr=source
l => addr=dest

ACQUIPHMCEMNT BV
INDUSTRIZVWCS 10-12
POSTZUS 311
3440 A4 \WCZSDEN

TEL C24.0-18241 }

BT1S5/6 Copyright (C) 1984 Intelligent Software Limited J%

b7 - complement of bit 6

o
Ja—

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 8

Synchronisation byte 00000000B e

The synchronisation byte is required because fast -~ . .
interrupt response is not guaranteed; the STATUS line
can be brought Low at any time, perhaps while

interrupts are disabled on the required destination

machine. The synchronisation method 1is detailed r
Type byte g
| L

The type byte contains information defining what kind of
transaction this 1s, 1including whether or not any data ,
pytes wi1ill be sent after the header. Its format 1s as i
follows: L
b0 - data flag: 0 => no data to follow header §
1l => data block to follow .
bl..b4 - not defined - must be zero r
L

b5 - end-of-record flag:

1l => end of record .
If the block was sent as a result of a Flush i
or Close command, this bit is set to force L

the network Read Character routine to return
the 'End of file' status, thus identifying d
the end of a given message or file. The 7 |

next Read Character or Read Status call will
revert to the 'Character not available'
state, unless the end-of-file flag is also
SEt--. '

t

| A

b6 - end-of-file flag: :
l => end of file

Only ever set in conjunction with the end-
of-record flag, it implies that the sending
machine has closed 1ts channel ¢to this
computer. All subsequent requests for
channel status or for further characters
will return the 'End of file' condition,
until another block of data is received on
this channel.

b7 - Type byte flag - must ALWAYS be set to 1, so b
that the synchronisation byte is guaranteed
to be the only string of eight zero bits 1in
the header.

4.2.4 Destination Machine Synchronisation

As stated above, there is some problem in synchronising -
the destination machine, which stems from the uncertainty
of catching the machine while its external interrupt 1is

enabled. Thils 1s now explained in detail:

A& A& i__ 4 A _a Ao hA..a b R.-& B ol

h_ .4

i s

L. &

23-Nov-84 ' EXOS 2.0 - Serial/Network Driver Page 9

If external interrupts are disabled, a latch-will record
the interrupt transition. The interrupt will then take

place as soon as the 1input is re-enabled, and tha
destination machine will immediately start looking at the
DATA line. '

The source. machine 1is not expected to wait for long

. enough to ensure that all machines will be listening, Dbut
instead begins to output its attention-grabbing sequence as
soon as it is ready - in the hope that all relevant

machines will catch on before that sequancz flnishas. The
protocol must therefore cope with a destination machine
starting to read the DATA line at any time during this

period.

RS232 character framing is by means of DATA line levels,
so any transition from 1 to 0 can be interpretad as a start
bit. This means thut a comouter which starts to listen to
the DATA lin2 at an arbitrary moment may picx up what 1t
thinks 1s a start bit when in fact it has simply found a
changing level in the middle of a character. The purpose
of the synchronisation byte in the header sequence 1s to
make sure that the character framing is correctly aligned
as quickly as possible.

The method chosen for achieving this is to send &
synchronisation character made up of all zero bits, and to
tell the destination machine to check every start bit
transition until it finds one which is followed by eight
zero bits and a stoo bit. The next 'start bit' 1s then
guaranteed to be the true start of a character.

The above specifications require that any aspiring
destination machine should follow this algorithm when 1t
enters the interrupt routine:

1. If STATUS 1line is high, return. (This would
occur 1if the response had been so slow that the
transfer was all over, or had been abandoned due
to lack of interest)

2. Wait until the DATA line 1s low

3. Wait for DATA line to go high (possible start
bit)

4. Delay for required time to synchronise to middle
of bits

5. Continue to read DATA at one-bit intervals until
a low bit is found

6. If any number other than nine high bits were
found (including the start bit) go to 4

BT15/6 Copyright (C) 1984 Intelligent Software Limited

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 10

7. Store the synchronisation byte, and the next e
three bytes which are received, in scratch
memory. These four values are the header - -

pattern, and should be sent repeatedly by the
source machine.

8. Check that the destinationrbyte is valid, and
that it holds either this machine number or the .
value zero. Return if this 1s not the case.

9. Check that the source byte is wvalid, and that 1
there is a channel open which can serve the
specified machine - ie. either a specific channel -

for that address, or a non-specific channel. .
Otherwise return.

10. Check that the type byte is valid.
11. Continue to read bytes. Check that each group of

four matches the values stored in step 7, and
continue to loop until a value does not tally.

| S |

12. The value which disagrees should be the syncC
byte, and it should contain instead the ones
complement of the dest byte. If this 1s not the

case, return.

"

r

13. Read the next two Dytes. If they are 1's /“‘1._
complement of each other then the latter is the

byte count for the following data block. Else -

return. L

14. If thé destination address was non-zero (1e. -
transaction 1is directed rather than broadcast), L.
pull DATA low for about lms as acknowledgement,

then release 1it.

NOTE: Whenever a byte is read, STATUS is checked for still
being held low by the source machine. If it goes high -
at any time, the link is immediately assumed broken.

4.2.5 Sending the Data Bytes -

When the destination machine pulls the DATA 1line low, r

and leaves it there for at least half a millisecond, that L
is the signal to the séurce machine to start sending any

data which may be included in this transaction. When DATA -

is released, the sender pulls it low again immediately then 1

gets on with sending the data block.

‘--I-.---‘

L - Beh

_ S

| .

R _a - & L 2

|

A_a

L.4

i_4

L. s

23-Nov-84 EXOS 2.0 - Serial/Network Driver P;ge 11

The format of the data block is:

The byte count which was received in the header sequence
is a true count of the number of data bytes in the block.
A value of zero means 256 bytes.

The two CRC bytes are a c¢yclic redundancy check
calculated on all data bytes in the block (but not the
header). The CRC is evaluated as a l6-bit value, which 1s
re-calculated when the data block is received. If the CRC
calculated on reception is not the same as the value which

was sent then the block is assumed to be garbage.

The algorithm for calculating the CRC 1s the same as
that used for the cassette driver but is explained here as
well: For purposes of the CRC calculation the data block
is regarded as a bit stream. Each time a data bit (not a
start or stop bit) is sent, a 16 bit CRC register 1s
updated. This is done in the serialisation routine which
is shared with the serial interface driver, so the CRC 1s

also calculated on data sent or received through the serial
handler even though this 1s not required.

The CRC register is a 16 bit value which is initialised
to zero at the start of the data block, and then when =ach
bit 1s sent or received the following operations are
per formed:

1. XOR the new bit with the most significant bit of
the CRC register and set the carry to this value.

2. [f the carry is set then XOR th2 register with
0810h.

3. Rotate the regilister one bit left, moving the
carry 1nto the least significant bit,.

4.2.6 Data Transmission Format

All network blocks are sent as a serles of bytes in the
same format as the serial interface driver sends themn,

using a word format of eight data bits, two stop bits and
no parity. The characters are transmitted at the currently

selected baud rate, which defaults to 9600 baud. '

ET15/6 Copyright (C) 1984 Intelligent Software Limited

23-=NO

4.3

v-84 EXOS 2.0 - Serial/Network Driver Page 12

Using the Network

4.3.1 Address Determination

The above protocols require that each machine on the
network has a unigue address, so the network handler
refuses to open channels onto the network unless the

computer has been given 1its address.

The address is held in the EXOS variable ADDR_NET, and

must be set by the user before attempting any network
operations. At power-on or cold reset it 1s set to zero,
which is invalid as a network machine number.

4.3.2 Opening Channels to the Network

As mentioned before, each channel which is opened to the
network must specify a remote machine number for which the
channel is reserved, although an address of zero will allow
data blocks to be received from any machine. This number
is given in the call to the EXOS channel opening function
as the unit number (see EXOS kernel specification). Any
filename given is ignored.

Note the clear distinction between the channel number
and the network address of the machine which that channel
serves., The two are completely independent; it 1s up to
the user to keep track of which channel serves which
machine when he wishes to output to the network. For
input, both wvalues are made available to him by the
interrupt handling code (see below).

4,3.3 Interrupts

von the first channel is opened to the network, the
external interrupts are enabled and will remain so until
the last channel is closed. 'hile ext2rnal 1nterrupts are
enabled, any transition from high to low on the STATUS line
will cause the network interrupt service routine to be
called. A particular consequence of this is that opening a
serial channel (for which the gulescent line levals are
low) on a machine which is connected to a network, will
cause any machines using the network to be interrupted, and
to hang in anticipation of a data block.

4.3.4 Buffers

Each channel opened to the network sets up two buffers

of 256 bytes 1length; a rec=zive buffer and a transmit.

buffer.

A
\

"

Yy

—

kY

r—9

R —

.-'-—---‘ l-n—4

h -4

h.a

E_ A&

- Al

ET15/6

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 13

The receive buffer 1is filled with data Dbytes which
arrive in blocks on the network, and can hold Jjust one
block at a time (no matter how short that block is; even a
block of just one byte effectively 'fills' the receive
buffer until it has been read or cleared). The user reads
from the buffer until it is empty, when it will be able to
accept further blocks from the network. The buffers of
each channel are independent, so blocks can be received
from any machine provided that the receive buffer which

serves 1t 1s free.

The transmit buffer is filled by the user, and sent as
complete blocks onto the network. It can be forced onto
the network at any time by using a "flush" special function
call, or will be sent automatically when the 256th byte 1is
written to 1it. The Transmit buffer will also be flushed
automatically if the channel is closed, thus enabling files
of any length (from 1 byte upwards) to be sent to another
machine while the buffering remains transparent.

4.3.5 Read and Write Functions

The network device supports the usual EXOS read and
Wwrite character function calls and the block read and write
calls.

The reception of blocks from remote machines is done by
an interrupt service routine, which 1s invoked when the

STATUS 1line goes low. The machine will remain 1in 1ts
interrupt routine watching for the DATA line to go low and
then read in the header. If the header 1is read

succesfully, and the block is one which this machine wants
to receive, ‘then the data is read into the receive buffer
for the channel serving the given remote machine. Each
channel can buffer one block at a time in 1its recelve
buffer. |

The network driver can cause a software interrupt when a

block is successfully received from the network. An EXOS

~ variable called NET IRQ is provided to switch this function

on and offt. If NET IRQ is zero then software 1lnterrupts

are enabled, and the occurence of a successful network

interrupt will cause the value ?NET to be placed 1in the
variable FLAG SOFT IRQ.

The EXOS variable CHAN NET 1i1s used to pass to th2 user,
the channel number from which buffered data can be read.

CHAN NET 1is only updated when a character 1is read from-the

channel which it specifies, or if that channel is closed.

It is then changed to the channel number of the lowest
numberad machine which has caused an 1nterrupt. So 1if
machines 2 and 10 send a block each while data sent by
machine 5 is still waiting to be read, then whan CHAN_NET
is changed it will point to the channel for macnine 2
rather than 10 whichever interrupted first. Machine 10

Coovriaht (C) 1984 Intelligent Software Limited

(11
{ 4

23-Nov-84 EX0OS 2.0 - Serial/Network Draiver Page 14 -

will be serviced later, as soon as it becomes the lowest Y
number awaiting attention. This allows specific machines

to be given priority - a teacher operating from machine 1 -~
will almost always havz his message received in preference
to a message from another machine, while broadcast messages
are given the highest priority of all. If no data 1is

available CHAN NET holds the value 255. y
(S
Whenever CHAN NET is updated, the EXOS variable MACH_NET
is also altered to hold the number of the machine which r
caused the interrupt. This is vital when a block 1is L
received on the non-specific channel, since there would
otherwise be no way of telling which machine sent 1it. In v
other cases it 1s simply useful - as stated above, the user i
would normally be expected to keep his own records of which -
channel serves which machine. _
An application oprogram requests bytes by calling the ok
EXOS RDCH or RDBLK routines, and 1s given bytes from the
receive buffer 1f they are available. If not, there are r
two possible responses: I1f an End-of-record flag was L
received 1n a header for this channel, an 'End of file'
condition 1s returned. Otherwise, the Read routine will .
halt until this channel receives data from the network. L
The "read channel status" function call 1s supported, so
the user can check for the 'End of file' or 'Character not | r
avallable' conditions before trying to read a character. > 4
Writing to the network 1s carried out as a series of -

WRCH or WRBLK function calls. If an error 1s encountered
when the buffer is to be sent, the network handler will
continuously retry at intervals of between quarter and half
a sr~cond. This can be stopved by pressing the STOP key,
which wi1ill also cause the buffer contents to be cleared

»fore the handler returns. Note that this error condition ~
can only be detected for directed data blocks; broadcast - r'
data does not require acknowledgement and therefore cannot b
check that the data was recelived prooerly
i
2
L
"
!
- .
r
.
’

r—

ey

| - N

ha

S

| WO

|

Y S

A_o

£ .4 &_o4

L @

b L.

i _ e

L. o | -«

S .. &

J

23-Nov-84

EXOS 2.0 - Serial/Network Driver

5. Quick Reference Summary

5.1 SERIAL - EXOS calls

OPEN/CREATE CHANNEL - Treated 1identically.
channel, and no network channel.

READ CHARACTER /BLOCK - Reads

WRITE CHARACTER/BLOCK - Writes bytes without 1nteroretat10n.

READ STATUS

SET STATUS

Device name "SERIAL:

Page 15

Only one

and unit number ignored.
variables to be set before open.

CLOSE/DESTROY CHANNEL - Treated identically.

characters
input, some buffering.

from

Filename

No EXOS

serial

- Always character ready (C=0).

- Not supported.

SPECIAL FUNCTION - No special functions.

§.2 NETWORK - EXOS calls

OPEN/CREATE CHANNEL - Treated identically

channels allowed, but no serial channel.

number defines destination mach

filename 1ignored. Device name "NET:".

ine

Multiple
Unit
number,
EXOS

variable ADDR NET must b2 set before open.

CLOSE/DESTROY CHANNEL - Treated 1identically.
send any buffered data.

Will try to

READ CHARACTER /BLOCK - Reads characters from buffer 1if

avalalable,

else returns EOF or waits.

WRITE CHARACTER /BLOCK - Puts bytes in buffer.
network when FLUSH special function

done, or channel is closed, or buffer 1s full.

to

READ STATUS

SET STATUS

SPECIAL FUNCTION - QQ@FLSH = 16 Send buffered data with

- C=0 if character 1in buffer.

C=0FFh 1f end of record.
C=1 1f buffer empty.
- Not supported.

Written
call 1is

end-of-record flag set.

@ACLR = 17 Clear send
buffers.

5.3 EXOS Variables

ET15/6

FORM_SET
BAUD_SER

ADDR NET

CHAN NET
MACH_NET

and

receilive

Serial format. Set to zero by network.

Serial and network baud rate.

Network address of this machine.

Channel on which network block recelved.
Machine from which network block received.

Copyright (C) 1984 Intelligent Software Limited /

(%

'

7

23-Nov-84 EX0S 2.0 - Serial/Network Driver Page 16

5.4

NET IRQ - Zero to enable network software interrupts

Software Iﬁierrupt Codes

?NET = 30h Occurs when a data block is received by
a network channel if NET_IRQ 1s zero.

++++++++++ END OF DOCUMENT ++++++++++

rla-n-.q.-‘;

| ZAN |

AR | ™

| SRR

™

	ET15-6_EXOS_20_Serial-Network_Driver~01
	ET15-6_EXOS_20_Serial-Network_Driver~02
	ET15-6_EXOS_20_Serial-Network_Driver~03
	ET15-6_EXOS_20_Serial-Network_Driver~04
	ET15-6_EXOS_20_Serial-Network_Driver~05
	ET15-6_EXOS_20_Serial-Network_Driver~06
	ET15-6_EXOS_20_Serial-Network_Driver~07
	ET15-6_EXOS_20_Serial-Network_Driver~08
	ET15-6_EXOS_20_Serial-Network_Driver~09
	ET15-6_EXOS_20_Serial-Network_Driver~10
	ET15-6_EXOS_20_Serial-Network_Driver~11
	ET15-6_EXOS_20_Serial-Network_Driver~12
	ET15-6_EXOS_20_Serial-Network_Driver~13
	ET15-6_EXOS_20_Serial-Network_Driver~14
	ET15-6_EXOS_20_Serial-Network_Driver~15
	ET15-6_EXOS_20_Serial-Network_Driver~16

