l16-Jan—85 EXQ0S 2.1 - Cassette Driver Pag

1. INTRCDUCTION

The cassette driver allows storage of data files on
cassette tape. Two cassette recorders can be handled, with
separate remote control of the motors on each, allowing
reading £from one and writing to the other. The files
stored can contain any data, not just ASCII.

The files are stored on tape in "chunks" with each chunk

being up to 4k bytes. Data 1is always written to or read
from the tape in complete chunks, with the motor being
stopped between chunks. However these chunks are bufifered

within the cassette driver so the user can read or write in
any sized blocks or single characters.

Twe data rates are provided for recording, these are
approximately 1000 and 2400 baud, When a file is read in
the speed is determined from the leader automatically.

The cassette driver makes use of the status
displaying messages when it is loading and saving,
to display the cassette lcading meter. This lecading meter
can be used to set the level coptimally when reading tapes.

line for
and also

2. CASSETTE FILE FORMAT

2.1

YNEMY A S

The details of how data is stored on cassette wi
covered later. This section just descrikes the «
format of a f£ile on tape as.it appears to the user.

A file consists of a "header chunk®, followed by one or
more "data chunks®. Each chunk will be preceded by
necessary information for syncronising the tape reading
routine and establishing the speed, including a long leader
tone. Details of this are given later.

The Header Chunk

The header chunk does not contain any data £
file. It contains the filename (which may be null
protection flag which can be used to prevent simple

tape copying (see later). The header chunk is u
identify the file, '

rom the
) and a
e To

s
ta
S to

D
ad

L

3.0

|
(el

EX0OS 2.1 -~ Cassette Driver Page 2

Data Chunks

Each data chunk contains exactly 4k of data from the

file except for the last one which may have any amount
trom zerc bhytes up to 4k. This smaller chunk is used to
mark the end of the file. The data within each chunk is
split up 1into 256 byte blocks, with a CRC check done on
zach bleck. This ensures that a bad chunk will be rejected
fairly quickly.

iNG THE CASSETTE DRIVER

1

ba open to 1t at a time, cne for reading and one for
W LG - A channel which is opened for readlng cannot be
wrltten to and vice versa. A reading channel is opened by
ma<ing an "open channel" call and a writing channel by
making a "create channel" call. The cassette driver is

thus the only built in device driver which distinguishes
Cetween these two EXQS calls.

Cpening Channels for Reading

A channel can be cpened for reading a file from tape by
moly doing an "open channel” EXQS call with device name
PE:". The unit number contrels the use of remotes (see

[

S
"APTE .

[}

The cassette driver allows a maximum of two channels to

)

celow) and the filename 1s optidnal. The cassette c¢hanne
S8 . CW,

wiil require a channel RAM buffer of 4k {enough for one
data chunk! and an error {(.NORAM) will be returned if there
is insufficient RAM. An error will also be returned if a
cassette read channel is already open (.2NDCH), or if there
is a protection violation (.PROT - see below}.

Assuming that all this was 0K, the cassette driver will
start the cassette motor (see section on remotes below),
and start searching for a suitable header chunk. At this

stage 1t will display the message "SEARCHING™ on the status
line,

When a header chunk is found, the name ef this file from

the header 1is examined. If it is not the same as the
filename speciflied by the user, and if the user's filename
was not null, then this is the wrong file. In. this case

the message "FOUND <filename>" will be displayed on the

status line and the gearch for a suitable header chunk will
continue.

If the filename is correct, or if the usaer's filename
was null which means "load the first file found", then the
messace "LOADING <filename>" will be displayed on the
status line and the "open channel™ routine will return wis
a zero status code to indicate success, after stopping the
cassette motor. Read character or read block function
calls can now e made to read the data.

Ot Aurmbed Las \ngorﬁik L URASem 2.0

l6~Jan-85 EXO5 2,1 - Cassette Driver

rd

s
ie

i

9]

At any poeint in this process, the STCP key can be
pressed which will abort the searching and Lo burn
immediately to the user. An internal flag will be sat so
that any attempt to read characters will result in an .EOR
error. The user must close the channel.

The "LOADING" message is left on the status line until

the channel is closed. It may of course be overwritten by
the user.

Reading Data

Data <c¢an be read from a cassette read channel by simply
making any combination of EX0OS read character and

read

block function calls. Data from the tape is bufferad in

the 4K channel RAM area. When the channel is first opened
this buffer will be marked as empty.

If there is data in the buffer when a read character

call 1is made then the next byte will just be returned to

the user immediately, and the buffer pointers adjustad.

If there is no data in the buffer when a read character
call is made then another data chunk must be read from the
tape, The tape moter will be started and the cass
driver will look for a chunk. When a chunk is found, it
is a header chunk then a .CCRC errzor is returned to the
user and the end of file flag will be set so that no more
bytes can be read. If a data chunk is found then the data
from it will be read into the buffer with CRC checking.

Having read the «chunk in successfully, the first
character will be returned to the user. If this was
last chunk in the file then a flag is set which
praevent anather chunk from being loaded. When this

chunk has all been read by the user, any further
charactsr calls

the
will
final
read
Will result in ,EOQOF errors being returned,

If a CRC error cccurred in one of the 256 bvte blocks in
the chunk, then any previous blocks will be buffered as

usual and can be read by the user. When all +the wvalid
blocks have been read, the next read character call will
return a .CCRC errcr, and subsequent ones will return .=0OF

errors. HNo more data can be read from this channel.

The STOP key is tested all the time while data is bhein
read from the tape. If it is pressed then it will cause
immediate return to the user, with the tanpe motor bhel
stopred first. The end of file flag will be set so th
any further read character calls will result in .EOT errors

being returned. No data from the interrupted chunk, or any
Later chunks, can be read.

L E=Jan =85 EXG 4.1 — Cassette Driver Page 4

Bl

Creating Channels for Wrilting

A "create channel” A0S call will be accepted as long as
thera is 4k of channel PRAM available for the data buffer, a
cassette write channel (3 not already open and there is no
protection violation (nnre below). This is the same as for
a reading channel.

Assuming that this i OK, the cassette driver will start
the cassette motor and walt for a second or so for the tape
spasd to stabilise. The message "SAVING <filename>" will
be displayed on the status line. After the delay the
cassette driver will write out a header chunk for this new
file, which will con!itin the filename, and then stop the
motor . fter this i will return to the user with a zero
status code to indicgatl.fe that the create was successful.

The STOP kevy is tentnd during the writing of the header
chunk and 1f it in pressed then the write will stop
immediately, the tape motor will be stopped and the channel
will ©be marked as invAlld so no data can be written to it.
The channel will stilil be open and so must be closed by the
user.

The "SAVING" mesusage on the status line is left there
until the ehannel LS closed, although it may be
overwritten by the ussv 0f course,

Writing Data

Data can be writhten to a cassette write channel by any
combination of write nharacter and write bleck calls. A
write block call is treated exactly as 1f each character in
the block was written individualiy. Data is written into a
4k buffer in channe! RAM and is only written out to the
tape when the buff«r becomes full, o¢r the channel 1is
closed.

wWhen a character 15 written, 1f ig just added to the
buffer and the buffer polnters adjusted,. If there is still
more room in +the buffer then the cassette driver will
return to the user immadiately. If the buffer is now full
then it will be written to tape as a data chunk.

The process of writing the data chunk is very similar to
writing out the header chunk when the file was created.
The motor is started and then there is a delay to allow it
to come up to speed, ‘The data chunk itself is then written
out and the motor atnpped. This process is interruptable
with the STOP key.

|
|
'
|
i
|
|
|
'
[
b
i
|
i
I

16-Jan-85 EXQS 2.1 - Cassette Driver Page 5

3.5

8]
8]

Closing Channels

The casgette driver treats the "close channel™ and
"destroy channel" EXO0OS calls identically. When a write
channel is closed then the f£inal data chunk must be written
out. This 1z done even L1f there are no bytes 1in the
buffer, to mark the eand of the file. If the STOP key was
pressed while data was being written then the channel will

have been marked as dead, and in this case the final block
will not be written out.

For any cassette channel the status line will be blanked

o remove the "LOADING" or "SAVING" message from the status
line.

4, MISCELLANEQUS CASSETTE FEATURES

4.1

The 5TOP Rey

The STCP key is tested whenever the cassette driver is
actually accessing the tape, either for reading or for
writing. Since the cassette driver disables normal EXCS

interrupts while it is accessing the tape, it does not rely
on the normal keyboard driver detection of the STOP Xkey.
Instead it tests for the stop key directly 1itself and

gimulates the keyboard's action. However 1t does not test
the STOP_IRQ EXOQS variable, so the STOP key will always
halt cassette operations even if STOP_IRQ is non-zero.

Whan the 8STO? key is detected, a .8T0P error will be
returned to the user, and also a software interrupt will be
caused with software interrupt code ?2STOP. The channel
which was being used will be marked as no longer valid so
that the cassette driver will reject further read or write
character calls.

Tape Output Speed and Level

The data rate for tapes Dbeing read 1s determined
automatically from the leader signal, and the level has to
be set by the user. However the speed and leval for
writing out of data are controlled by EX0S variables which

must be set before opening the channel, unless the defaults
are required

LV_TAPE determines the approximate peak to peak ouuput
level of the cassette driver as follows:

0 or 1 => 20 mv

2 => 40 mv (default)
3 => 80 mv
4 => 170 mV
5 => 350 mV
6...255 => 700 mV

R

i6=~Jan-85 EXQOS 2.1 - Cassette Driver Page 6

4.3

SP_TAPE selects between two tape output speeds, a fast
soeed and a slow speed as follows: {(The baud rates are
approximate because the actual rate depends on the data
since a one and a zero bit take different amounts of time.)

SP_TAPE=0 => Fast speed (approx. 2400 baud - default)
SP_TAPE<>0 => Slow speed (approx. 1000 baud}

Cassette Loading Level Meter

The cassatte loadlng level meter is displaved whenever
cassette driver ig searching for or reading a chunk

m the tape. It derived directly from a hardware level

Sloi RS0 circuit, separate from the cassette input

cuiz, and is displayed on the status line as either a
or a green block next to each other.

£ the input level is increased it will become red and
ne level is reduced it will become green. The optimum
1 1is when it is just on the verge of changing between
d and green, and it may in fact flash between the two as
ta comes in. Although this is the optimum level, the
ssette input is not very sensitive to levels and a wide
rgin around this optimum level is acceptable.

Thne level meter is removed from the status line when a
chunk has been read, to indicate that the tape is no longer
bzing accessed,

The changing of the level meter is done by changing
palette colours 2 and 3 of the status line. When the level
meter 1s removed, these colours are restored to their
original values. However in the meantime, 1if there 1is
anytning else on the status line 1t may change colour.

Remote Control Relays

e Enterprise 1is eqguipped with two remote control
which enable it to control two tape recorders
tely The motor 1is started when the cassette driver
to read or write a chunk and stopped as soon as this
een completed, or the STOP key pressed,

Do
ow 5 =

T
1a
20a
ntc
5

CTQU‘JJ'!

a
a

When a cassette channel is OPENed for reading or CREATEQ
for writing, the unit number decides which remote relay

will be used for this channel. A unit number of zero or
one will use remote-~l and any other value (notably two)
will use remote-2. If the user gives no unit number then

EXCS will set it to zero by default, so remote-~l will be
usaed.,

lé-Jan=-85 EX0S 2.1 - Cassette Driver Page 7

4.5

4.6

If two channels are opened then they will each use the
remote defined by their unit number. It 1is <generally
useful to ensure that these are different s¢ that each
channel has exclusive use of one of the remotes, but there

is no checking for this. The remote not being used by a
cassette channel will not be disturbed at all.
Ut muwaoer poas 1o W VarSiomn 2O

The remote relays can also be controlled by two EXOS
variables (called REML and REM2}), separately from the
cassette driver. When one of these 1s changed then the
appropriate relay will be set on or off as appropriate.
The cassette driver always updates these varilables when it
uses the remotes so the variables always represent the
current state of the relavs. Like all other on/off EXO0S
variables, zero corresponds to "on" (motor going) and 0FFh
corresponds to "off" (motor stopped!}.

The remote relays will always be set off whaen a reset
I/0 system occurs (see EXCS kernel specificatiocn). This

occurs at a warm reset and when a new applications program
takes control.

Use Without Remots Contrcl

Cassette recorders without remote control can he used
provided the PAUSE button on the recorder 1s used at the
correct times. For simply loading and saving programs, no
pausing is necessary, assuming that the program doing the
loading and saving is fast enough ([IS~BASIC is),

For saving, pausing is only necessary to avoid long gaps
between chunks, it is not essential. For loading, pausing
is necessary to ensure that the data chunks are not missed
while the machine is processing the data.

To help with this, when the cassette driver has finished
reading a chunk, and there are mcre data chunks to follow,
it displays a "PAUSE" message on the status line in vplace
of the level meter, This message will remain until the

next chunk 1s required, when it will be overwritten with
the level meter again,

Cassette Sound Feedthrough

The EX0S variable TAPE _SND 1is used ¥e control
feedthrough of the tape input signal to the main sound
output. If it is OFFh then there is no feedthrough. If it
1s zero then the tape input signal will be fed to the hi-Ffi
gsound oeoutput and the internal speaker (1if MUTE SND is
zero), but not to the headphone/cassette output (ftao avoid
feedback problems). The default setting is on (zero).

16~-Jan—85 EX0S 2.1 - Cassette Driver Page 8

4.7

Copying Protection

Since two cassette channels are supported, o¢ne for
reading and one for writing, it is very easy toc open
appropriate channels and copy any file at all, regardless
of 1ts content, onto another tape. This can be done fairly
easily with a BASIC "COPY" command. The cassette driver

contains a facility for protecting a file against this very
simple type of copying.

When a file is created, and the neader written out, the
current value cf the EX{0S variable PROTECT is cepied into
tne header. If this 1is zero (the dafault) then the file is

not protected. IF it is non-zero then the file is marked
as a protected file,

Whan a read channel is opened; and the header is read
in, the "protect” flag from the header is examined. If it
15 zero then no specilal acticn 1s taken. If it is non-zero
then the cassette driver will not permit a write channel to
ze ogen at the same time as this read channel. Thus 1f a
write channel is already open then this "open channel"™ call
will Dbe rejected with a .PROT error. If this T"open
channel”™ 1s accepted then further "create channel” calls
wilil be rejected with the same error.

5. HARDWARE

The hardware will not be explained in any detail but the
varicus ports and bit assignments are covered here.

The cassette data input, level detection input, remote
controcl outputs and sound feed-through control are all
available as bits on 1I/0 ports as follows:

data input pert 0B6h bit 7
level input port O0B6h bit 6
remote 1 output port 0BSh bit 6
remote 2 output port OBS5n bit 7
feedthrough toggle port 0BS5h bit 5

The cassette output is in fact the game as the sound
output, with the cassette out socket doubling as a
headphone socket, The cassette output is therefore done by
using the DAVE chip in D/A mode and so several of the DAVE
chip registers are used. These will not be detailed here
as they are defined in the DAVE chip specificaticn.

e e AR

A S el R

le~Jan-85

B0 2a

- Cassette Driver Page §
6. CASSETTE DATA FCORMAT
As mentioned " befcre a file consists of a series of
chunks, the first of which is a header chunk and the rest

of which are data chunks.

of a

chunk in scme detail.
specilal case of a data chunk with a special block count

The section describes the format

A header chunk

is in fact a

as
will be explained later.
6.l Cassette Signals

Tach byte is stored on tape as a series of 8 bits, least
significant bit first, with no start or stop bits. Each
bit is stored as a single cycle, with a different freguency
to indicate whether the bit 1s set or clear. These
frequencies are in a ratio of 2:3 which is large enocugi to
allow the software to distinguish them when reading in, but
small encugh tc keep the data rate high.

An intermediate freguency i3 used for the leader tone
which c¢omes before the data, and this leader is used to
determine the data rate when reading.

A single cycle of lower frequency is used to indicate
the start of the data and also establish the phase of the
signal (since it may or may nct be inverted).

When the data is being read back, all timing is done in
terms of whole cycles rather than half cycles. This
ensures that it is relatively insensitive to changes in
duty c¢ycle which can result from level changes (drop-outs
(=% ale)

The

the twe tape speeds are:

Fast Speed
Leader cycle 424us (2358 Hz) 1000us
Cne bitx 344us (2907 3Fz) 800un
Zero bhit 5C4us (1984 Hz) 1200us
Sync bit 696us (1437 Hz) LedDan
6.2 Overall Chunk Format

Each chunk starts with a synchronmisation segus
consists of several secords of leacder Ireguency
the cassette recorder amplifilers and auiemat.c
' . [- em B vy m T ooy

level c¢ircuits to stabillze, agd to westablisn
rate. This 1is follcwed by a Slﬂg*& low fregu
4 H ¥ = i 3 PR
cycle to establish the gpnase cf the sigrnal, and

unused byte toc recover
always has the valu

byte

e 0cAanh

frcm this cone long pulse
and is to r

synchronisation does not ocCcur.

actual wheole cycle times and freguencies

usead

for

Slow Speed

ensure

o
e

2

ing

[SLA T A
v
.

e

Pl
§
L iE
R AP]

-

[

¢
7
(IR I & BRI T

,

riofa
"
’

ed- L

3
Civay Lo o»

]

503
W PP -
Ly e

S IS IR

i1

o |
W o3
(r
bt

"

A
3

f
LI tY]

4]

L I PP

ih-Jan-ts EX0S 2.1 - Cassette Driver Page 10

AZter this byte is the data of the chunk, followed by a

tew cycles of leader frequency (the trailer) to ensure a
clean end to the data. The overall format is shown in this
dlagram:

| Leader | Sync | Dummy | 06Ah | Data | Trailer |

Internal Chunk Format

The data within a chunk is split up inteo a maximum of
sixtesn 256 byte blocks, each starting with a byte count
and ending with a two byte CRC check. These blocks are
vrecadaed in the chunk by a single, one byte, block count
which defines how many blocks ther=s are in the chunk.

The format of the data within a chunk is therafare as
shown in this diagram:

etk it — T W Y it fmki ExE = e TR M i S i = mp e e v m = TR e = ity ey e v o —

| ?lock count | BLOCK | BLOCX | | BLOCX |
04-13 / b o
/ N
| Byte count | Dat:z | Low CRC | #igh GRC |
"'"j;""_"':""f;‘;:"‘"""‘ e O oo e s s SIS IR Ly D vt

A data chunk has a block count of 0 to 16, and each
X 1s always 256 bytes long, except for the last block
the last chunk of the file. A block containing 256
s of data has a byte count of zero, which cannot be
nterpreted because zero is not a valid quantity.

Header Chunk Format

A header chunk always contains exactly one data block
{of wvarying size), but has a block count of 255. This

"brock count 1s used te recognise that it is a header chunk.
The format of the data within the header chunk is:
bvta 0O: Protection byte (000h => protected file
OFFh => unprotecter file)
byte 1: \
.. AN Filename with length byte first., Length
@ s > byte is in range 0...28.

byte N+l: /

l6-Jan-85% EX0S 2.1 - Cassette Driver Pa

10
"
fun
o

€.5 CRC Checking

Each data block ends with a 16 bit CRC check. This 1is
calculated by treating all bytes of the data block (not
including the byte~count byte) as a bit stream. A l6 bit
CRC register 1is initialised to zero at the start of the
block and the following process carried out on each bit:

1) XOR the new bit into blS of the CRC register

<} If the new bl5 is set then XOR the CRC with C8LlCh
3} Rotate the CRC cne bit left, putting bl5 into b0
Note

that this is the same CRC algorithm as that usad by
the network driver.

7. QUICKX REFERENCE SUMMARY

7.1

EX0OS Calls

OPEN CHANNEL - Opens a read channel and gets the header
chunk. Only one read channel allowed. Devic=
name "TAPE:", Filename
compared with file on tape (unless null). No
EXOS variables need be set up before cpen.

CREATE CHANNEL - Opéns a writs channel and writ=zs the
header chunk. Only one write channel allowed.
Devics name "TAPE:",
Filename wrizzzn into header. EXOS wvariabples
LV_TAPE, SP_TAPE and PROTECT must be set up
before craat=.

CLOSE/DESTROY CHANNEL - Tr=2ated identically. For a writs
channel will wrica out any buifer=d data.

READ CHARACTER/BLOCX - Onlv allowed for read channel.

ET14/8

Rezd charact

zrs from buffzr until emptv, then
=zd another dat

2 chunk from tape.

WRITE CHARACTER/BLCOCK Only allowed for write <channel.
Writes charac==rs intc buffer and writas 1t out

to tape when it gets full.
READ STATUS - Returas C=9FFh at end of file or afzzr
an error.
c=90 ctherwise.
SET STATUS - Nct supportad.

SPECIAL FUNCTION functions

1
=
(o]
n

e
m
0
}_4
m
|....1

EXQOS Varizables

LV_TAPE - Tape output level (1l...6)
SP_TAPE - Tape output speed. O0O=ZIast, 0FFh=slow
PROTECT - Non-zero to writs out crotactagd file
TAPE_SND - Non-zero tc supprass tape sound feed-throughn
REMI - \ Control tape remote relays.
REM2 -/ 0 for ON, OFFh for OFF.

++++++++++ END OF DOCUMENT ++++++++++

Copvright (C) 1985 Intalligent Sofzwara Limitad

	ET14-8_EXOS_21_Casette_Driver~01
	ET14-8_EXOS_21_Casette_Driver~02
	ET14-8_EXOS_21_Casette_Driver~03
	ET14-8_EXOS_21_Casette_Driver~04
	ET14-8_EXOS_21_Casette_Driver~05
	ET14-8_EXOS_21_Casette_Driver~06
	ET14-8_EXOS_21_Casette_Driver~07
	ET14-8_EXOS_21_Casette_Driver~08
	ET14-8_EXOS_21_Casette_Driver~09
	ET14-8_EXOS_21_Casette_Driver~10
	ET14-8_EXOS_21_Casette_Driver~11
	ET14-8_EXOS_21_Casette_Driver~12

