11-Sep-84 (MRL) EXOS - Video Driver Specification Page 1

1 Introduction

ET11/9

The screen driver handles the display of any number of
video "pages" in the various different display modes which
the video chip provides although it does not support all
the possible modes.

The display is managed in terms of video "pages", with
one page corresponding to each channel. Before a channel
is opened to the screen driver the wuser must specify
various parameters, such as a video mode and page size, by

setting EXOS variables. A channel can then be opened to
device "VIDEO:". If a filename or unit number is specified
then it will be ignored. The video driver will work out

how much screen RAM it needs for this video page and obtain
that much RAM from EXO0S, including enough for the various
variables needed.

Once the channel has been set up in this way, the user
can read and write characters or blocks of data. This data
will be interpreted differently by pages of different
modes, particularly control characters and escape sequences

At this stage however, the video page will not be
visible on the display. A special function «call 1is
required to cause a video page to be actually displayed on
the screen. It is only at this time that the appropriate
line-parameter blocks are set up and the text/graphics will
appear. It is possible to display any vertical section of
a video page at any vertical position on the screen,
covering up anything which was displayed on those scan
lines before. If the page width is less than the full
screen width then the margins will be adjusted to display
the page in the middle of the screen.

The screen driver has a 256 character font in video RAM
which it uses for all character type displays. This 1is
initialised to a standard ASCII character set repeated
twice but any character may be re-defined by the user.
Each character is 8 pixels wide and 9 lines deep. The se
values 1include the space between characters and between
lines.

Co-ordinate Systems

The co-ordinate system used 1in specifying graphic
positions etc 1is standardised so that giving the same
commands to two pages of different resolutions or colour
modes will produce a pattern of the same size on the
screen. A graphics page of full screen size will be 972
logical pixels high and 1344 pixels wide. This corresponds
to twice the maximum horrizontal and four times the
vertical resolution available. All beam positions etc. are
specified in these co-ordinates, and depending on the
colour mode the actual position will have to be an
approximation.

Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 2

Text pages do not use this co-ordinate system, they use
a system based on character positions so the top left
corner is (1,1) and the top right corner (of a full screen
size low resolution text page) is (1,42).

Attribute graphics pages actually keep a beam position
in graphics co-ordinates and a seperate cursor position in
text co-ordinates. The use of these is explained later.

2 Basic Control of Video Pages

ET11/9

As mentioned before, each video page 1is a seperate
channel. When a channel is opensd to the video driver this
implies that another video page is to be created. The
video driver looks at EXOS variables which specify the page
size, page mode and colour mode. These variables must be
set up by the user before opening a video channel. From
these variables the video driver determines how much video
RAM it needs and obtains that much with an EXOS function
call ("Allocate channel buffer").

The video driver maintains the line parameter table in a
fixed place in its absolute device RAM area. The 1line
parameter table always consists of 28 line paraneter blocks
of 9 scan lines each for the display area and various other
ones to generate the frame sync and borders. The first
line parameter block is reserved for the status line
display which is a fixed area of RAM. The other 27 line
parameter blocks can display any part of any page, so

display is always in vertical units of 9 pixels. All 28
line parameter blocks are initially set up to be blank (ie
all border colour). The variable LP POINTER in the EXOS

variable area points to the start of the 1line parameter
table.

Display Modes

The display mode is specified by an EXOS variable
MODE_VID the allowed values of which are:

- Hardware text mode (up to 42 chars/line).
- High resolution pixel graphics.

Software text mode (up to 84 chars/line).

- Low resolution pixel graphics.

- Attribute graphics.

U H-HO
|

1

The three graphics modes correspond to the PIXEL, LPIXEL
and ATTRIBUTE modes of the Nick chip (see separate Nick
chip specification).

Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 3

2.2

ET11/9

Colour Modes

As well as the display mode, each video page is of a
particular colour mode. The colour mode is specified by an
EXOS variable called COLR _VID. The allowed values for this
variable are:

Two colour mode
Four colour mode
Sixteen colour mode
256 colour mode

wNHO
|

For text modes it is only useful to use two colour mode,
unless the characters in the font are re-defined for doing
some sort of block graphics. Also attribute mode must
always be in two colour mode, although sixteen colours will
actually be available.

Page Size

Two EXOS variables, X SIZ VID any Y_SIZ VID, define the
size of the page to be created. The vertical size is
specified in character rows. It can be any value from 1
to 255 although only 27 rows can be displayed on the screen
at one time. The horizontal size is specified 1in 1low
resolution character widths, and can be any number from 1
to 42.

A special function call is provided to return the size
of a video page. It returns the number of lines and the
number of characters per line. The characters per line
value returned is the actual number of characters per line
so in the case of a software-text mode it will be double
the value in X_SIZ_VID when the channel was opened.

The parameters for this call are:

Parameters: A = Channel number (l...255)

B = 2 (Special function code)
Returns: A = Status

B = Number of characters per row

C = Number of rows

D = Mode of page (0, 1 or 2, 5 or 15)

Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 4

2.4

Display Control

Video pages are not actually displayed on the screen

until the user explicitly requests this. This request is
done by a special function call. The parameters for this
call are:
Parameters: A = Channel number (1l...255)
B = 1 (Special function code)
C = First row in video page to display
(1...size)
D = Number of rows to display (1...27)
E = row on screen where first row
should display (1l...27).
Returns: A - Status

The three row parameters are all given in character row
units since the area of screen specified must be a whole
number of line parameter blocks. The displayed page will
replace anything which was displayed on that part of the
screen before. If the channel is subsequently closed then
any part of the screen which was displaying that channel
will be made border colour (by bringing the margins in the
relevent line parameter blocks right in).

A value of 1 for the position on screen parameter (given
in register E) refers to the line on the screen directly
below the status line. Thus it is not possible to overlay
the status line since zero will not be accepted.

If a value of zero is given for the position in the page
parameter (register C) then the portion of the screen
defined by the other two parameters will be blanked (ie.
made entirely border colour).

3. Character Output

ET11/9

The screen driver supports both the single character
write and the block write EXOS function calls. A Dblock
write 1is exactly equivalent to writing all the characters
individually, except that it is rather faster as it avoids
the overhead of going through EXOS for every character.
Block write 1is implemented wusing the general purpose
WRBLOCK utility routin.

Printing Characters

All characters above 1Fh will be treated as printing
characters and will be put at the appropriate place on the
video page. All modes have some sort of "cursor" which
moves when a charcater is printed but the details vary
between different modes.

The bit maps for characters are stored in a fixed
character font which is initialised to an ASCII character
set. Each character 1is eight bits wide and nine bytes
deep. The user can re-define any of these characters by an

Copyright (C) 1984 Intelligent Software Limited



1l1-Sep-84 (MRL) EXOS - Video Driver Specification Page 5

escape sequence as specified below.

3.1.1 Text Mode Character Printing

Text pages (modes 0 and 2) maintain a single text cursor

which in text co-ordinates. The printing character is
displayed at this position and the cursor moved to the next
character slot. At the end of a 1line the cursor

automatically moves to the start of the next 1line, with
automatic scrolling if it is at the bottom of the screen
(this automatic scrolling can be disabled).

Fekad Pixel Graphics Mode Character Printing

Pixel graphics pages maintain a beam pointer in graphics
co-ordinates. The printing character is put at this beam
position and the beam moved to the next character position,
moving to the start of the next line if at the end of a
line. Characters can be put at any pixel position, not
just on character boundaries. There is no scrolling. 1If
the beam is too near the bottom of the page to fit the
character on then it will not print anything.

Characters are printed in the current ink colour
regardless of whether the bzam is on or off and the paper

colour of the charcater is unaffected. The characters are
plotted by reading bits out of the font and plotting the
pixel in the current ink colour if the bit is set. Thus
the characters will be correct in any colour mode. To

improve legibility the character height is doubled for
sixteen and 256 colour mode.

3.1.3 Attribute Graphics Mode Character Printing

Attribute mode character printing is rather more
complex. All attribute graphics pages maintain a seperate
text cursor 1in text co-ordinates and a graphics beam
position in graphics co-ordinates. Characters are printed
at the text cursor position and so will always be in exact
character positions. At the end of a line it will go on to
the start of the next line and at the end of the page it
will go back to the top left of the page - there 1is no
scrolling.

The character 1is displayed by copying the currently
selected ink and paper colours into all attribute bytes
corresponding to this character (nine of them). The
character data itself from the font is then put into the
pixel data area but only if the beam is on. If the beam is
off the pixel data is unaffected, only the attrbute data is
affected. This allows the colours of part of an existing
display to be changed.

ET11/9 Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video

3.2

the
not

in
are

Character
characters and

interpreted by video pages,

which are not understoo
control code is ESCAPE (
an escape sequence for ca

Driver Specification Page 6

Control Codes and Escape Sequences.

control
these are

range 00h to 1Fh are
printed. Some of
depending on the mode. Any
d are simply ignored. A special
ASCII 1Bh) which is used to start
rrying out various functions.

Here is a 1list of the control codes and escape
sequences interpreted by the various modes. The more
complex ones of these are explained further in the
following sections.

3.2.1 Codes Interpreted by Any Video Page

“Z (1Ah) - Clear entire page and home cursor/beam.

“J (0Ah) - Line-feed. Move <cursor down to next 1line
(scrolls if at bottom of screen in text mode and
scroll is enabled.)

“M (0Dh) - Carriage return. Returns cursor to start of
current line

“® (1Eh) - Cursor/beam home. (ASCII RS)

esckK - Define character (see below)

escC - Set all palette colours \ see below for parameters.
escc - ©Set one palette colour /

escI<n> - Set ink colour to <n> \ See below for details of
escP<n> - Set paper colour to <n> / these in different modes
esc=<y><x> - Set cursor position (see below)

3.2.2 Codes

Interpreted by Text Pages Only

“Y (19h) - Clear to end of line. Does not move cursor.
“H (08h) - Cursor left. (ASCII BS)
“I (09h) = Cursor right. (ASCII TAB)
“K (0Bh) - Cursor up. (ASCII VT)
“V (16h) - Cursor down. (ASCII SYN)
esc? - Read cursor position. Also supported 1in
attribute mode. (see below)
esc.<n> = Set cursor character to character code <n>.
escM<n> - Set cursor to palette colour <n>
escO - Set cursor on.
esco - Set cursor off.
- ET11/9 Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 7

escS - Set automatic scroll on

escs - Set automatic scroll off

escU<m><n> - Scroll up lines (m-20h) to (n-20h). m <= n

escD<m><n> - Scroll down lines (m-20h) to (n-20h). m <= n
3.2.3 Codes Interpreted by Graphics Pages Only

escA<xx><yy> - Position beam at co-ordinates (xx,yy) where

XX & yy are each 16-bit hex numbers specified
low byte first.

esCR<LxxX>Kyy> - Relative beam movement by amount (xx,yy).
esc@ - Read beam position. (see below)

escS - Set beam on.

escs - Set beam off.

esc.<n> - Set beam to line style <n> - see below.
escM<n> - ©Set beam to line mode <n> - see below.
escF - Graphics fill - see below.

escE - Plot ellipse - see below.

3.3 Position Cursor

The escape sequence to position cursor works in all

modes. In text mode it simply moves the cursor. In
attribute graphics mode it moves the text cursor but leaves
the graphics beam pointer alone. In pixel graphics modes

it moves the graphics beam pointer to the appropriate text
co-ordinates, so it will be on a character boundary.

The format of the escape sequence is:
esc=<y><x>
This sets the cursor to row (y-20h) and column (x-20h). If
either <x> or <y> is 20h (thus setting row or column =zero)

then that co-ordinate will remain un-changed. This allows
just the row or column to be set.

ET11/9 Copyright (C) 1984 Intelligent Software Limited



11-S

3.4

- ET11/9

ep-84 (MRL) EXOS - Video Driver Specification Page 8

Define Character

This escape sequence allows the user to re-define one of
the 256 characters. Although it is sent to a specific
channel, it actually affects a global character font and
will thus affect other channels. The syntax of the escape
sequence is:

escR<n><Krl1><r2><r3><r4><r5><r6><r7><r8><r9>

where: <n> is the character number (0...255)
<EE>55..<E9> are the bytes for the nine rows
of the character. <rl> is the top
row.

Note: 1In high resolution text mode, only the middle six
bits of the character bytes will actually be displayed as
the other two are masked out and used to control the colour
selection.

Palette Colours

Each video page has a palette of eight colours
associated with it which will be initialised to some useful
set of colours (such as black, red, green, vyellow, blue,
magenta, cyan, white). There is an escape sequence with
which the user can change all these colours. the format of
this is:

esclCLed<e><e><ke>Xa><ke><e><e>

Each <c> is a byte specifying one of the palette colours
and there must always be eight of them.

There 1is another escape sequence which allows just one
palette colour to be changed. The format of this is:

esccin><c>

Where <n> is the palette colour number 0...7 and <c> is the
new value for this palette colour.

When new palette colours are selected any line parameter
blocks which correspond to this video page will be updated.

Ink and Paper Colours

The wuser may specify a palette colour for both the ink
and paper colour with seperate escape sequences. For all
video modes the ink colour defaults to one and the paper
colour to zero.

For pixel graphics pages the allowed ink and paper
colours depend on the colour mode so it is 0 or 1 in two
colour mode, 0...3 in four colour mode, 0...15 in sixteen
colour mode and 0...255 in 256 colour mode. Pixels are
always plotted in the current ink colour. The paper colour
of the display is only changed when the page is cleared.

Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 9

For attribute graphics mode the ink and paper colours
can be in the range 0...15 and they control what colours
are put 1into the attribute bytes. When a character is
plotted both the ink and paper colours of the relavent

attribute bytes will be set up. When plotting 1lines,
ellipses or filling however, only one of them is set up
depending on the line mode (see later for details). The

line mode also controls whether ones or zeroes are put into
the pixel data area.

In four, sixteen or 256 colour text modes the ink and
paper colours have no effect, the palette colours for each
pixel are determined directly from bits in the character
font.

In two colour hardware text mode the ink and paper
colours are always (0,1) or (2,3). These interact with the
top bit of the character number being printed. Basically
the top bit is complemented if colour pair (2,3) is selected.

In two colour software text mode four colour pairs are
available, =atX30%7 ~¢2,33, (4,5) and (6,7)s :Characters are
always printed in the current colour pair. There 1is no
interaction with the character codes.

3.7 Graphics Line Style

For a graphics page the line-style may be set with an
appropriate escape sequence. This specifies a single byte
has the following meanings:

1 - Solid line (default)
2..14 - Various types of broken and dotted lines.

3.8 Graphics Line Mode

An escape sequence specifies the line mode byte which
has the following meanings:
- PUT plotting (default)
- OR plotting
- AND plotting
- XOR plotting

wN HO

For pixel graphics pages when plotting a pixel the
current ink colour is combined with the old colour of the
pixel according to the operation selected by the line mode
and then stored.

ET11/9 Copyright (C) 1984 Intelligent Software LimiteAd



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 10

3.10

For attribute graphics pages the line mode is more
complex. Line modes 4 to 7 are also defined which are
equivalent to 0 to 3 but do "paper" plotting rather than
"ink" plotting. When paper plotting 1is selected the
current paper colour is put into the attribute byte,
leaving the ink colour in this byte unaffected. When ink
plotting is seected just the ink colour is put into the

attribute byte, 1leaving the paper colour unaffected. In
adition the plotting on the pixel map will use a one bit
for ink plotting and a zero bit for paper plotting. This

bit will be combined with the old bit for this pixel
according to the PUT/OR/AND/XOR mode and the result stored.

Graphics Fill - Paint

The graphics fill command is a simple escape sequence
which does a fill from the current beam position. It fills
in the current ink colour up to any boundry which is not
the same colour as the current beam position. It handles
concave shapes and tests for reaching the edge of the video
page. It may fail to fill the entire shape if it runs out
of stack but this should only happen with extremely complex
shapes since it does garbage collection on the stack when
it gets full.

Graphics Ellipse Drawing
The ellipse drawing routine takes two 16-bit parameters
(low byte first) specifying the x and y radii. To draw a
circle these should be the same value. The centre of the
ellipse will be at the current beam position. The format

of the escape sequence is:

2scE<Lxx><yy>

3.11 Border and Fixed Bias Colours

ET11/9

Two EXOS variables BORD_VID and BIAS_VID are provided to
control the hardware border and fixed colour bias
registers. The values in these variables are written out
to the NICK chip on every interrupt. The border colour is
written directly to the border register. The top 5 bits of
the fixed bias variable are written to the bottom 5 bits of
the fixed bias register, and the top bit of the register is
set according to the EROS variable MUTE_SND since it is
used to silence the internal speaker.

Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 1l

4. Character Input

4.1

Simple charcater input

When a read character (or one character of a read block)
is done from the video driver the result depends on the
mode. In text modes the ASCII code of the character at the
cursor position will be returned, without moving the
cursor. With graphics mode the palette colour of the pixel
at the current beam position will be returned. This will
be 0 or 1 in two colour mode, 0...3 in four colour mode,
1...15 if sixteen colour or attribute modes and 0...255 in
256 colour mode.

Reading Cursor Position

The escape Ssequence: esc? is supported in text
and attribute modes. This triggers the video channel to
return the current cursor co-ordinates as the next two
characters read from this channel. The co-ordinates will
be returned in the same way as they are specified for
cursor positioning, ie. with a 20h offset added on.

Reading beam position

This is supported by graphics pages only (including
attribute mode). The escape sequence: esc@ will
trigger the channel to return the current graphics beam
position as the next four bytes read from the video ©page.
The co-ordinates are returned in the same format as they
would be specified for an absolute beam position.

5. Status Line

ET11/9

As mentioned earlier there is a special status 1line
display which is outide the normal page/channel structure.
The first line parameter block is reserved for this status
line and will never be used to display any other page. The
two byte variable LP_POINTER which is at a fixed address in
the EXOS variable area contains the address of the start of
this 1line parameter block. This is used by the cassette
driver to modify the palette colours of the status line to
provide the cassette level meter display.

An EXOS variable (called ST _FLAG) is provided which if
zero will cause the status line to be displayed and if non-
zero will cause it to be un-displayed (that region of the
screen will be border colour). This is implemented by the
video driver examining ST FLAG every interrupt and setting
the margins in the reserved line parameter block
appropriately.

Copyright (C) 1984 Intelligent Software Limited



11-Sep-84 (MRL) EXOS - Video Driver Specification Page 12

ET11/9

There is a two byte pointer (ST_POINTER) defined at a
fixed address in EXOS variable area which contains the
address of the 40 byte area of RAM which is the status
line. This pointer will point to Z-80 page-2 and the RAM
will be at this address in segment OFFh. The user or
external devices can access the status line by finding its
address from ST_POINTER. Built in devices can access it
directly by using the public symbol ST_LINE which is the
start of the status line RAM (in %Z-80 page-2 segment O0FFh).

Copyright (C) 1984 Intelligent Software Limited



	ET11-9_EXOS_1_Video_Driver_Specification~01
	ET11-9_EXOS_1_Video_Driver_Specification~02
	ET11-9_EXOS_1_Video_Driver_Specification~03
	ET11-9_EXOS_1_Video_Driver_Specification~04
	ET11-9_EXOS_1_Video_Driver_Specification~05
	ET11-9_EXOS_1_Video_Driver_Specification~06
	ET11-9_EXOS_1_Video_Driver_Specification~07
	ET11-9_EXOS_1_Video_Driver_Specification~08
	ET11-9_EXOS_1_Video_Driver_Specification~09
	ET11-9_EXOS_1_Video_Driver_Specification~10
	ET11-9_EXOS_1_Video_Driver_Specification~11
	ET11-9_EXOS_1_Video_Driver_Specification~12

