11-Sep-84 (MRL) EXOS - Kernel Specification Page 1

1 INTRODUCTION

EXOS is the ROM operating system for the ENTERPRISE
micro-computer. It provides an interface between an
application program and the hardware of the machine. The
main feature of EXOS is a channel based input/output
system. The input/output system allows device
independent communication with a range of devices
including:

1. The display. This may be configured in a variety of
modes.

2. The keyboard. Includes ths built in joystick and
programable function keys.

3. A screen editor with word processing capabilities.
4. Cassette tape.

. P RS232 type serial interface.

6. Centronics compatible parallel interface.
(£ Comprehensive four source stereo sound generator.
8. Integral three wire network interface.

Provision 1is also made for the addition of other
devices together with associated driving code so that the
system is simply expandable.

The input/output system only supports devices and
includes no implicit file handling. Any file handling
needed (such as with cassette tape) is provided by the
device handler itself. A disk device handler would
provide random access file handling facilities but would
interface using exactly the same function calls. ..

2 EXOS SYSTEM ORGANISATION

2x3

ET10/9

General

EXOS resides in ROM using a segment that is normally
not mapped into the Z80 address space. Communication
with EXOS is achieved through vectors in the first 256
bytes of RAM (in the Z80 address space). This RAM
segment must always be present in the first page of the
780 address space as it contains the interrupt vector and
other system information required to allow EXOS to
service interrupts and system calls.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL)

2.2

ET10/9

EXOS - Kernel Specification Page 2
Use of zero page
The following information is stored in the first 256
bytes of RAM:
fmmm e b m b ===+
00h | Reserved for CP/M emulation |
R it ettt datat et Tl DLl el +
08h | Free |
. D iatah Sttt et b Tl e +
10h | Free |
e et et Bt e -
18h | Free |
e it ettt st e e +
20h | Free |
i et R e +
28h | Free l
il ettt matatatt T T +
30h l EXOS system call entry vector |
i e e e el ettt o
38h | Interrupt vector | Soft ISR ad. |
e et B T e T et o +
40h |
+
48h | Reserved for EXOS code/data
- +
50h | |
- pmmmmtpmm e — ==+
58h | I I
s it Sttt St T s +
60h l I
+ Reserved for CP/M emulation +
68h | |
+ (D=fault FCB) +
70h | |
+ +
78h | I
e et B e s e Tt
80h
. . Reserved for CP/M emulation .
. . (Default buffer area))
F8h | |
s it itk Sttt Rt et L e Tl

Copyright (C) 1984 Intelligent Software Limited

11-Sep

2.2

ET10/9

-84 (MRL) EXOS - Kernel Specification Page 3

Software Interrupts

The "Soft ISR adr" entry is the address of a wuser
supplied routine to service certain software generated
interrupts. The address has the form:

o mm tommmmm fomm +

| JMP I Address |

e Fom e FRE +
03Ch 03Dh 03Eh

Location 03Ch contains a Z-80 absolute jump
instruction and must not be changed by the user. Address
is the address of the software interrupt service routine.
If the address is zero then software interrupts will be
ignorad. The s=gment containing the service routine must
always be kept in the correct page of 7Z-80 memory space
as it can be enterad anytime as a result of an interrupt.

The software interrupt can respond to a variety of
events selected by the software, such as STOP key pressed
or data arrived on the network.

System calls

Programs may communicate with EXOS through the "RST
30h" instruction. The code at location 30h is not a
simple Jjump instruction as this code is responsible for
selecting the EXOS ROM page before EXOS can be entered.
The space from 3Fh to 5Bh will be used for additional
coda neaded for EXOS entry. This entire area from 30h to
5Bh should not be modified by the user at all, exceont for
the SOFT ISR address at 3Dh & 3Eh.

The different EXOS calls are defined by use of a
function code. This code is a single byte value and
should be stored immediately following the "RST 30h"
instruction. Parameters to the EXOS calls are normally
passed 1in the Z80 registers. Buffers and strings are
passed by address. Return values from EXOS are also
normally passed back in registers. If no values are
returned in either register BC or DE then the old
contents will be overwritten anyway. However registers
HL, IX, IY and the alternate register set (including AF')
will remain wunchanged by all EXOS calls (with an
exception for the ALLOCATE CHANNEL BUFFER call which
returns a pointer in IX). Register AF returns a status
code.

Copyright (C) 1984 Intelligent Software Limited

11-Sep

ET10/9

-84 (MRL) EXOS - Kernel Specification Page 4

EXOS maintains a separate system stack in the EXOS
workspace and therefore needs very little stack space in
the program area. However, at least 8 bytes should
always be available beyond the top of the stack. Even if
no EXOS calls are made, this space 1is required for
interrupt servicing. The program stack should also be
managed correctly such that there is never any wanted
information above the stack pointer.

The system calls available are:

Code Function

0 System reset (user only function)

1 Open channel (user only function)

2 Create channel (user only function)

3 Close channz1l (user only function)

4 Destroy channel (user only function)

5 Read character

6 Read block

7 Write character

8 Write block

9 Channel read status

10 Set and read channel information

1% Perform special function on channel

16 Read/Write/Toggle EXOS Variable

17 Capture channel

18 Re-direct channel

19 Set default device name

20 Return system status

21 Link device (user only function)
22 Read exos boundary

23 Set user boundary

24 Allocate segment

25 Free segment

26 Scan ROMs (user only function)
27 Allocate channel buffer (device only function)
28 Explain error code

All EXOS calls return a status value in register "A".
This value is zero if the call was completely successful
and non-zero otherwise. The S and Z flags are set to
reflect the value of A prior to the return (except for a
RESET SYSTEM call which never returns with A non-zero
anyway) . EXOS function call 28 can be used to provide a
simple explanation string for certain error codes (see
later).

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 5

3 Memory Organisation

3.1

The ENTERPRISE Addressing Scheme

The 2%-80 has a 16-bit address bus [0000h - FFFFh]
which allows direct addressing of 64k of memory. In
order to 1increase this capacity to 4M the DAVE chip
provides an interface to the ENTERPRISE's 22-bit address
bus through four internal 8-bit registers (the page
registers).

The top two bits of the Z-80 address define four "Z-80
pages" each of 16k and each with a corresponding page
register. Thus 2%-80 page-0 contains addresses 0000h -
3FFFh, page-1 contains 4000h - 7FFFh, etc. The eight
bits from the appropriate page register replace the top
two bits of the Z-80 address to give a 22-bit system
address.

In this manner the ENTERPRISE memory is divided into
256 16k segments any one of which can be made to appear
in any of the four Z-80 pages by putting its segment
number into the appropriate page register.

The top four segments (FCh - FFh) provide the built in
RAM in the 64k machine. These segments are also the only
ones which the NICK chip can use for screen memory and
because of this are referred to as the "Video RAM". The
internal ROM 32k ROM is made up of segments 00h and O01l1h,
which are reflescted by the hardware in segments 02h and
03h. The cartridge occupies segments 04h to 07h.

3.2 EXOS Segment Allocation

ET10/9

When the system is started up, or a cold reset is
done, EXOS determines the amount of available RAM and
tests each segment. Faulty segments are treated as 1if
they do not exist, leaving the remaining RAM usable. The
system will not function, however, unless at least 32k of
RAM, including segment FFh, is working.

EXOS maintains an allocation of segments between five
states :- free, allocated to the system, allocated to a
device, allocated to the user, or shared between the user
and the system. There is always one segment (the system
segment) allocated to the system, details of which will
be given 1later. This will contain EXOS and device
variables and data areas. This will always be the top
video RAM segment (segment OFFh).

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 6

ET10/9

One RAM segment (the page zero segment) is kept
outside this allocation scheme. This segment contains
the EXOS entry points as defined above and must always be
in Z-80 page zero when interrupts are enabled or EXOS is
called. On a 64k machine this will be the lowest video
RAM segment (segment O0FCh). On a machine with any extra
RAM, it will be a non-video segment. Apart from the
first 256 bytes it may be used by the user. It cannot be
freed (see later).

All other RAM segments in the system will initially be
free. The contzants of Z-80 pages one and two when the
applications program is entered will be undefined.

Two EXOS function calls are provided to control RAM
allocation - allocate segment and free segment. These
calls may be made by the user or by a device driver. The
user will only be able to free segments allocated to him
and a device driver will only be able to free segments
allocated to a device (although there is no check on
which device is freeing it).

A new segment may be obtained by a device driver or
the wuser by making an "allocate segment" function call.
If there 1is a free segment then it will be marked as
allocated to the user or device as appropriate and its
segment number returned. If there is no free segment but
there 1is unused space in the last sagment allocated to
the system then this segment may be allocated to the user
as a shared segment (see thes next section). A device
will never be allocated a shared seagment. If there is no
free space at all than a non-zero status code will be
returned. Non-video RAM segments will be allocated in
preference to vidso RAM segments if there is a choice.

Whenever EXOS requires more RAM (when a channel 1is
opened) it may grab a free segment if one exists and
allocate it to itself. It always frees segments as soon
as possible when it requires less memory (when channels
are closed). EXOS will always use video RAM segments if
any are available.

Shared Segment

There can be at most one segment in the system which
is shared between the user and the system. When the user
makes an "allocate segment" EXOS call, if there are no
free segments and there is currently no shared segment,
then the user will be allocated a segment which EX0S is
using part of. This is then the shared segment.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 7

ET10/9

The shared segment contains two boundaries, the USER
boundary and the EXOS boundary. EXOS uses the segment
from the top down as far as the EXOS boundary. The user
is allowed to use from the bottom up as far as the USER
boundary, which will never be higher than the EXOS
boundary.

The part of the segment (if there is any) between the
two boundaries is no-man's land, neither EX0OS nor the
user should use it. If EXOS requires more RAM to open a
channel then it can move the EXOS boundary down as far as
the USER boundary and similarly the user can move his
boundary up as far as the EXOS boundary to get more
space.

To manipulate the boundaries in the shared page two
EXOS calls are provided - SET USER BOUNDARY and READ EXOS
BOUNDARY.

The page may become un-shared at any time if EXOS no
longer needs it, in which case a "read exos boundary"
call will indicate that there is no shared segment. Also
the wuser may give up the page entirely to EXOS with a
suitable free segment EXOS call. If there is no shared
segment when the user does a read system boundary EXOS
call then the position that the EXOS boundary would be in
a shared page if the user were to be allocated one, is
returned, with a segment number of zero to indicate that
there 1is no shared segment. This is useful for finding
out how much RAM in the system is free.

Note: The pointercs which mark the boundaries both point
to the byte above the boundary (since a
boundary should be considered as being between
two bytes). They will be in the range
0000h...3FFFh, and can be equal.

Device RAM Areas and Device Descriptors

Every device in the system has a device descriptor
which defines the name of the device, the address of its
code and various other details. EXOS keeps a 1linked
list of these descriptors in RAM. Details of the format
will be given below. ‘

There are three types of device in the system which

differ in how they are linked into the chain and how
their RAM is allocated.

Copyright (C) 1984 Intelligent Software Limited

l1-Sep-84 (MRL) EXOS - Kernel Specification Page 8

3.4.1 Built In Devices

Built in devices are those whose code 1is in the
internal ROM with the EXOS kernel. At startup time their
device descriptors are copied into RAM and 1linked into
the chain. Each built in device has a fixed area of RAM
in the system segment allocated to it. These areas are
determined at assembly time and thus may be addressed
absolutely since these devices are linked with the EXOS
kernel.

3.4.2 External Devices

These are devices whose code is contained in expansion
ROMs, either in the cartridge socket or on the expansion
stack. They are linked into the system in the same way
as, and immediately after, the built in devices. They
will each be allocated an area of RAM immediately below
the copy of the device descriptor in system RAM. The size
of this RAM area is specified in the device descriptor in
the ROM.

When the device code is called 1Y will point to the
device descriptor (in Z-80 page-2) and so the RAM can be
accessed relative to IY. If "n" bytes are allocated then
they can be accessed at:

Y-, "2¥-5 [UOTYR4EA0n%])

This area of RAM will always be within the one segment
and once allocated will never move or be de-allocated,
and will be filled with zeroes before calling the devices
initialisation routine. Note that in fact built 1in
devices can also be allocated an area of RAM in this way
but this is unlikely to be used as it is generally more
convenient to address RAM absolutely.

The later section on extezrnal ROM scanning will

explain exactly which of the 256 possible segments will
be examined for external devices.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 9

3.

3.5

3.

ET10/9

4.3 User Devices

User devices can be linked into the system at any time
by an EXOS call giving the address of a complete device
descriptor in RAM. (As opposed to the incomplete ones
contained in the ROMs). They can be allocated an area of
device RAM in the system segment when they are linked in.
IX will be pointed to this RAM when the initialisation

entry point of the device is called. The device must
then remember this address since it will never be told it
again. If "m" bytes are allocated then they can be

accessed at:
IX=L i IX=-2 e IX-m

Like the device RAM for external devices, this RAM can
never move or be de-allocated, and will be filled with
zeroes before calling the devices initialisation routine.
Note that when the device's initialisation routine is
called again (at warm reset time for example) IX will not
point to this RAM area so the device will have to
remember that it has already been initialised once.

Channel RAM areas and Channel Descriptors

Every open channel has an area of "CHANNEL RAM"
allocated to it. This is allocated when the channel is
openad and de-allocated when it is closed. The size of
it is determined by the device when.the chann=sl is opened
and although it cannot change in size after this time, it
can be moved around. This can only occur when other
channels are opened or closed or a new device is 1linked
in¢ The device driver 1is always informed when the
channel RAM for any channels open to it is moved.

5.1 Allocating Channel RAM

When a channel is opened to a device, EXOS will call
the OPEN CHANNEL entry point of the device. At this
stage no RAM is allocated. Before it finally returns to
EXOS the device driver must make an "allocate channel
buffer" EXOS call. This will cause EXOS to allocate the

requested amount of channel RAM for this channel. Lt
will return an error code if there is insufficient RAM
available, which can then be returned to the user. It

actually requires a bit more RAM than the amount
specified by the device as it also creates a channel
descriptor for this channel.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 10

When the channel RAM is setup the device specifies two
16 bit sizes the sum of which is the total channel RAM
size. One size specifies the amount of the RAM which
must be in one segment and the other specifies the size
of the remainder of the RAM which may be allowed to
extend 1into other segments. The latter of these 1is
ignored (taken to be zero) except for a video device. A
pointer to the allocated buffer is returned in IX and the
segment containing the start of the buffer will be put in
Z2-80 page-1.

EXO0S moves these channel RAM areas around to make
efficient use of memory. Whenever the device driver code
is entered with an EXOS channel call, IX will point to
the appropriate channel RAM, which will be in Z-80 page
155 When EXOS decides to move this RAM (which can only
happen when a channel is opened or closed) it will move
it and then call the BUFFER MOVED entry point of the
device code to allow the device to adjust any pointers
which it may need to. This is particularly important for
the wvideo driver as it must update the 1line parameter
table. Interrupts are disabled from just before moving a
buffer and returning from the BUFFER MOVED routine of the
device.

Note that register IX actually points at the byte

after the 1last one in the RAM area. This 1is a
consequence of the way that EXOS builds its RAM
downwards. Thus the bytes which the device driver can

use (assuming "m" bytes of channel RAM) are:
CIXY) 5k IX=2)rene.o.. (IX-m)}

If the allocated buffer extends into a second segment
(only allowed for a video device) then this will have a
segment number of one less than the first one - and so on
for further segments.

3.5.2 Channel Descriptors

3.6

ET10/9

As mentioned before EXOS creates a channel descriptor
for each channel when it is opened. This is in fact
located at IX+0 upwards, but there are no fields in it
which are of interest to the device driver so its layout
is not defined here.

EXOS memory usage

EXOS uses RAM from the top of system memory downwards.
As far as possible it keeps the video RAM for itself and
allocates non-video RAM to the user. The layout of the
EXOS system segment (which is always segment OFFh) is as
below:

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 11

————————————————————————————— - - -

EXOS variables area
(Includes : EXOS variables
absolute device RAM areas
line parameter table
EXOS stack)

Device descriptors and device
RAM areas for external devices.

Channel descriptors and channel
RAM buffers.

. (May continue into other segments) .

The very top of the EXOS variable area contains a few
defined values which are guaranteed not to move in future
versions of EXOS. They are listed here with the address
where a device will see them (in Z-80 page-2). If they
are to be accessed by an applications program, then the
correct segment must of course be paged in.

O0BFFFh - USR_P3 \ These are the contents of the four
0BFFEh - USR_P2 \ paging registers when EX0OS was last
O0BFFDh - USR_P1 / called

0BFFCh - USR_PO /

0BFFA/Bh - STACK_LIMIT Devices which need more than the

default 100 bytes of RAM can let
their stack grow down as far as
the contents of this variable.

0BFF8/9h - RST_ADDR The address of a warm reset
routine which must be in the
page-zero segment. If this is
zero then a cold reset will be
done.

OBFF6/7h - ST _POINTER The Z-80 address of the status
line memory. The 42 bytes from

this address onwards are the
status 1line (see video driver
spec ET11/9).

0BFF4/5h - LP_POINTER The Z-80 address of the start of
the 1line parameter table. The
first 1line parameter block will
be the status line one.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep

-84 (MRL) EX0S - Kernel Specification Page 12

0BFF3h - PORTB5 This 1is the current value in

the output port 0B5h which is a
general I/0O port. Devices which
need to modify some bits of this
port should wuse this wvalue to
avoid changing other bits, and
should keep this variable up to

date.

OBFF2h - FLAG_SOFT_IRQ This is set to , a non-zero
software interrupt code by a
device to cause a software
interrupt to occur. It is also

ET10/9

tested by wvarious devices to
determine whether the stop key
has been pressed.

The size of the EXOS variable area depends on the
amount of RAM and ROM in the system which is determined
at startup time and cannot change.

The size of the device RAM area depends on what
external and user devices are linked into the system.
The size of this can only change when a user device which
requests some system RAM is linked into the system.

The channel buffer area is very dynamic since it can
change whenever a channel is opened or closed. The
channel buffers may occupy any number of segments. The
system will of course ensure that channel buffers for the
video device are kept in the internal video RAM.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 13

4. Applications Program Interface
4.1 1Initialisation
4.1.1 Locating Expansion ROMs

Any expansion ROM which is intended to be recognised
by EXOS must start with the following:

0000: DB 'EXOS ROM'
0008: DW DEVICE_CHAIN ;May be zero (see later)
000A: ;Entry point of ROM.

When the machine is first switched on, or when a cold
reset is performed the entire 4 Mega-byte memory space is

examined to look for expansion ROMs. To avoid problems
with ROMs reflecting due to incomplete decoding, not
every possible 16k segment is examined. Basically each

256k boundary is examined, thus allowing one expansion
ROM in each expansion unit on the stack, and then the
cartridge slot is examined.

The cartridge slot occupies segment numbers 4, 5, 6
and 7. Each of these segments is tested for a ROM, but
when a ROM 1is found the first 256 bytes of it are
compared byte-for-byte with segment 4, and the new ROM
ignored if it is identical. This ensures that if a
single 16k cartridge which reflects four times is plugged
in then it will only be found once, but still allows a
mother board with decoding to support one to four 16k
cartridges plugged in any of its four slots.

4.1.2 Selecting an applications ROM

The segment numbers of all expansion ROMs which are
found are put into a list, which also includes the
internal ROM. Under certain circumstances EX0S will call
the entry point of all the ROMs at O0C00Ah in turn,
passing an "action code" in register C and various other
parameters in other registers. This is referred to as a
"ROM SCAN" and will be discussed in more detail later
with details of the various action codes.

At cold reset time a ROM scan is done with action code
1. Any ROM which contains a main applications program
which wants to take control at startup (such as BASIC or
LISP) should thus use this as its cue to start. To do
this is simply does not return from the entry point call,
but must do a reset EXOS (with flags set to 01100000b)
call before it can do anything else. Having done this
call it must then set up its own stack somewhere in the
page-zero-segment re-enable interrupts and is then free
to make any EXOS calls.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 14

4.2

Scanning the ROMs

When a ROM scan is done each ROM in the list will be
called in turn, with the internal ROM being called last.
In certain cases a ROM may not return from this call if
it wishes to start itself up as an applications program.
This should only occur in response to action codes 1 or 2
below. Normally a ROM will examine the action code and
possibly other parameters and th2n either return
immediately, or carry out some function and then return.

If a ROM does return then it must preserve the action
code in C and any other paramsters passad in registers B
or DE, to allow the ROM scan to continue. Iif the ROM has
carried out some service or is returning some parameters
and wants to prevent any other ROMs from also trying to
do this, it should return with the action code in
register C set to zero which all other ROMs will ignore.
If this is done then registers B and DE can be corrupted.
All other registers (AF, HL, AF', BC', DE’, HL', IX and
1Y) can be corrupted by ROM service routines.

The action codes provided are:

g, Do nothing - Must preserve BC and DE.
L. Cold reset

2. User string

3 Help string

4, Unknown EXOS variable

Bre Unknown error code

Action codes above this should not occur and so may be
ignored.

4.2.1 Action code 1 - Cold Reset

This was described above. No parameters are passed
and any ROM which wants to take control at power on
should not return.

4.2.1 Action code 2 - User string

This action code results from a wuser SCAN ROMs
function call. It 1is passed a pointer to a string in
register DE. This string will have a length byte first
and will be stored in a buffer in Z-80 page-2 (the system
segment). The first word of this string will have been
uppercased and register B will contain a count of how
many bytes there are in this first word.

11-Sep-84 (MRL) EX0S - Kernel Specification Page 15

4.

ET10/9

The first word is the name of a command, service or
program. If the ROM does not recognise this name then it
should return from the call, preserving BC and DE. If it
does recognize the name then it should respond to it,
possibly interpreting the rest of the string as
parameters, returning with register C=0 unless it wishes
other ROMs to also respond to this command.

The ROM can interpret this action code as a cue to
start up if it recognises a suitable string. For example
the strings "BASIC", "LISP" and "FORTH" will be
interpreted in this way by the appropriate language
cartriges. 1In this case the ROM will not return from the
call but behaves as if it received action code 1 (see
earlier).

The ROM may recognise the string as a command or
service in which case it will carry out some operations
which may involve I/0 <(all normal user EXOS calls
including open and close channel and even another SCAN
ROM call can be made) and then return. It may be useful
for such services to make use of the default channel
number facility (using channel number 255 - see later)
since it cannot otherwise know what channels are open
because it does not know from what applications program
it was called.

2.1 Action code 3 - Help string

This action code also results from a user SCAN ROMs
function call, where the first word of the string was
"HELP". The "HELP" (and any trailing spaces) will have
been removed from the string and then the rest of the
string treated exactly as if it was the original string
receivad from the user. The effect of this is that the
ROM sees a string with the first word of it uppercased
with the length of this first word in B. If this string
received is null (so the original string was Jjust
"HELP "), then the ROM should just write its name and
version number to the default channel (using channel
number 255) and return with BC and DE preserved. If the
string is not null then if the first word is any of the
action code 2 commands recognised by this ROM then any
help information about that command should be printed and
register C set to zero.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EX0OS - Kernel Specification Page 16

4.2.1 Action code 4 - ©Unknown EXOS variable

This action code results when a read/write/toggle EXOS
variable call was made with a variable number not-
recognised by the internal ROM. Expansion ROMs can
therefore implement additional EXOS variables which may
be useful for expansion devices. The parameters are (see
also the spec of the EXOS call later on):

0, 1 or 2 for READ, WRITE and TOGGLE (onss complement)
EXOS variable number (Always >= 128)
New valuz to be written (only if B=1)

O &= w
o

If the variable number is not recognised then the ROM
should return with BC and DE preservead. If the variable
number is one supported by this ROM then the function
should be performed and the following parameters
returned:

C=0
D = New value of EXOS variable
4.2.1 Action code 5 - ©Unknown error code

This action code results from a user "explain error
code" function call. The error code 1is passed in
register B and if it is recognised by this ROM then a
pointer to a string should be returned as follows:

B = Segment number containing message
cC=20
DE = Address of message string (length byte first).

Error codes in the range 0COh to OFFh are reserved for
internal EXOS wuse and so should not be generated by
external devices or ROMs although they can be interpreted
by this function to re-define the built in error codes.

4.3 Software Interrupts

Software interrupts provide a way for the user to be
alerted to various events occuring within EXOS. When a
device ' (probably in its interrupt routine) detects an
event which should cause a software interrupt, it sets a
byte in the EXOS variable area (FLAG_SOFT_IRQ) to the
code indicating what type of interrupt it was. This byte
is also available as an EXOS variable.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep

ET10/9

-84 (MRL) EXOS - Kernel Specification Page 17

Nothing else occurs until EXOS is about to return to
the user's code, either directly from the interrupt
routine, or from an EXOS call if the program was
executing in EXOS when the interrupt occurred. Devices
should look at FLAG_SOFT_IRQ and cause a premature return
if it contains the value ?STOP (20h) to ensure prompt
response to the stop key, returning status code .STOP.

When execution is about to return to the user, if he
has defined a soft ISR address in page-0 then this
routine will be jumped to instead of returning to the
user's program. The environment will be exactly as it
would be if the return to the user had been made, with
the correct paging and the user's stack active. The
return address to the user will still be on the stack so
the routine may return to the main program. If it does
return then all registers must be preserved as it could
be an effective interrupt.

It is not necessary for the software interrupt routine
to return if it doesn't want to, 1t can cause some sort
of warm re-start of the user's program.

The service routine can find out the software
interrupt code by reading an EXOS variable CODE_SOFT_IRQ.
This 1is in fact a copy of the code set up by the device
since the code itself is reset to zero before jumping to
the routine to avoid multiple responses to the software
interrupt. If more than one software interrupt occurs
before the soft ISR can be called then only one will be
acknowledged.

All sources of software interrupts from built in
devices can be enabled or disabled by setting appropriate
EXOS variables, or making special function calls. The
codes from built in devices are:

10h...1Fh - ?FKEY.... Keyboard function key pressed
20h + p?STOP Keyboard STOP key pressed
21lh - ?KEY Keyboard any key pressed
30h - ?NET Network data received

EXOS Variables

There are a number of variables defined which may be
set, read or toggled by an EXO0S function call. These
variables control many different aspects of the system,

particularly in controlling options for devices. Each
one 1is 8 bits and is identified by an 8 bit variable
number. Some are provided for expansion devices and are
not of interest to the user. The currently defined

variables are (subject to change):

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84

0

~Novon

10

11

ET10/9

(MRL) EXOS - Kernel Specification Page 18
IRQ ENABLE_STATE b0 - set to enable sound IRQ.
b2 - set to enable 1Hz IRQ.
b4 - set to enable video IRQ.
b6 - set to enable external IRQ.
bl,3,5 & 7 must be zero.
FLAG_SOFT_IRQ. This 1is the byte set non-zero by a
device to cause a software
interrupt. It could also be set
by the user to cause a software
interupt directly. This
variable 1is also available at a
fixed address as specified in
section 3.6.

- CODE_SOFT_IRQ. This 1is the copy of the flag set
by the device and is the
variable that should be
inspected by a software
interrupt service routine to
determine the reason for the
interrupt.

DEF_TYPE Type of default device.
0 => non file handling device (eg. TAPE)
=> file handling device (eg. DISK)
DEF_CHAN Default channel number. This channel
number will be wused whenever a
channel call ‘is made with channel
number 255.
LOCK_KEY Current keyboard lock status.
CLICK_KEY 0 => Rey click enabled
STOP _IRQ => STOP key causes soft IRQ
<>0 => STOP key returns code
KEY IRQ 0 => Any key press causes soft IRQ, as
well as returning a code.
RATE_KEY Keyboard auto-repeat rate in 1/50
second
DELAY KEY Delay 'til auto-repeat starts.
0 => no auto-repeat
TAPE_SND 0 => Tape sound enabled
Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL)

12

13

14

15
16

17
18

19

20
21
22
23

24

25
26

27
28
29
30
31
32

33
34

ET10/9

WAIT SND

MUTE_SND

BUF_SND

BAUD_SER
FORM_SER

ADDR_NET
NET TRQ

CHAN_NET

MODE_VID
COIR_VID
X_SIZ _VID
Y _SIz_VID

ST FLAG

BORD_VID
BIAS VID

VID_EDIT
KEY EDIT
BUF_EDIT
FLG_EDIT
SP_TAPE
PROTECT

REM1
REM2

EXOS - Kernel Specification

Page 19

0 => Sound driver will wait when a
queue is full

<>0 => Sound driver returns .SQFUL error
0 => internal speaker active.

<>0 => internal speaker disabled.
Size of sound =2envelope storage in
'phases', for next sound channel
opened.

Daefines serial baud rate.
Defines serial word format.

Network address of this machine

0 => Data received on network will
cause a software interrupt.

Channel number of network block
received

Video mode \ These variables select
Colour mode \ the characteristics of
X page size / a video page when it
Y page size / is opened.

0 => Status

line is displayed

Border colour of screen
Colour bias for palette colours 8...16

Channel number of video page for editor
Channel number of keyboard for editor
Size of edit buffer (in 256 byte pages)
Various flags to control editor
function - yet to be defined.

Non-zero to force slow tape saving.
Non-zero to make cassette write
protected file.

out

\ State of cassette remote controls,

/ zero is off, non-zero is on.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 20

5. EXOS System Calls.

ET10/9

Below are details of all the EXOS function calls.
Function codes 1 to 11 are the EXOS channel calls and
cause the appropriate entry point of the appropriate
device driver to be called. When the device is entered
the channel number will be in register A and be in the
range 1l...255. The parameters in registers BC and DE
will be passed direct to the device driver. Registers IY
and IX will be set to point to the appropriate device RAM
and channel RAM areas respectively. EXOS saves all
registers and so any registers may be corrupted by
devices except where parameters are returned in them.

The format of all strings is a length byte, followed
by the bytes of the string. The length byte is the
number of characters in the string and does not include
the 1length byte itself. A null string is a single byte

of zero. All name strings are checked for legality and
uppercased before being used by the system or passed to
devices. This includes filenames and device names for

"open channel" function calls and the first word of name
strings for the "locate ROMs" function call.

Where parameters are in fact pointers to memory care

must be taken with the memory paging. The correct
segment must be in the Z-80 memory page and the buffer
pointed to must not go over a l6k page boundary. To

access this memory the device driver must determine which
segment was in the appropriate Z-80 page when EXOS was
called. Four bytes in the EXOS variable area are
defined to contain the values of the four paging
registers when EXOS was last called so the segment can be
extracted from here.

As a convenience for built in devices a common
subroutine called GET_SEGMENT is provided which is passed
a caller's Z-80 address in DE and will put the
appropriate segment in Z-80 page 1. It will return a
modified address in DE which points to the required
address in Z-80 page 1. Note that this will page out the
channel RAM, but the device RAM will still be available
in page 2 (for built in & external devices). This
routine only alters registers AF and DE.

Copyright (C) 1984 Intelligent Software Limited

11-Sep

5.1

-84 (MRL) EXOS - Kernel Specification Page 21

Filename syntax

For open and close channel a filename string is
required. The syntax of this is:

[[device-name] [unit-number] :] [filename]

where [] denotes an optional part. The device name
(if present) is a up to 28 letters, upper or lower case.
The wunit number (if present) is a decimal number in the
range 0 to 255 and may optionally have the character "-"
seperating it from the device name, or may immediately
follow the device name. The COLON must be present if
either the device name or unit number 1is present to
seperate the filename. The filename itself is a string
of up to 28 characters from the following:

Upper or lower case letters (not distinguished)
Digits
\A~_.

If the device name is present but no unit number then
a default unit number of 1 is used. If no device name is
present then the default device name ("TAPE" on the basic
machine) is used either with the supplied unit number if
there 1is one or with the default unit number set by the
set default device name EXOS calls.

Function 0 - System reset

ET10/9

Parameters: C = Reset type flags
Returns: A = Status (always zero but flags not
Interrupts disabled

This call causes a reset of the operation system. The

flags passed in register C control exactly what the RESET
does, as below.

Copyright (C) 1984 Intelligent Software Limited

set)

11-Sep-84 (MRL) EXOS - Kernel Specification Page 22

BO .6 D3 must be zero

b4

Set => PForcibly de-allocate all channel
RAM, and re-initialise all devices.
User devices will be retained and
device segments will not be de-
allocated.

b5 - Set => As bit-4 but also re-link in all

built in and extension devices. User

devices will therefore be lost.

Device segments are not de-allocated.

b6

|
92}
®
ct
Il
v

De-allocate all user RAM segments.

b7 - Set => Warm reset. This is equivalent to
pressing the RESET button on the
machine, bits 0 & 1 are ignored and
the function will not return. It
will cause a jump to the warm reset
address if defined or a complete
system re-start if not.

Note that the flags are not set to be consistent with
the status code (which 1is always zero anyway) and
registers BC', DE' and HL' are corrupted by this EXOS
call. Also a side effect of the call is that interrupts
are disabled.

Function 1 - Open channel

ET10/9

Parameters: A channel number (must not be 255)
DE pointer to filename string
Returns: A status

The status return in A indicates whether the
open was successful. The format of the filsname string
is specified later. It includes device name, unit number
and filename.

The filename and unit number are passed to the device
driver for interpretation and many devices will just
ignore them. If the device 1is one which supports
filenames then it will return an error code if the file
specified does not already exist. Some devices require
options to be selected (by special function calls) before
the channel can be used. Also some devices require
parameters to be specified by setting EXOS variables
be fore a channel can be opened.

If the device is one which allows multiple device
drivers of the same name to exist (such as disks) then
the wunit number is used to determine which driver is
called. For example for disks unit numbers 0 and 1
correspond to the first driver, 2 and 3 to the second and
so on.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 23

Note that before this call gets through to the device
routine, the filename component of the string pointed to
by DE will have been copied to a new string which DE now
points to, without the device name or number, uppercased
and checked for illegal characters. This string will be
in the system segment which is located in Z-80 page-2
when the device is called so it is not necessary to do
any paging in order to access it. The unit number will
be passed as a byte in register C.

For the open channel function to be successfully
completed, the device must allocate itself a channel
buffer before it returns.

Note also that the channel number will have been
incremented by one beforz being passed through to the
device so it will be in the range 1...255 and can never
be zero as far as the device is concerned.

Function 2 - Create channel

Parameters: A channel number (must not be 255)
DE pointer to filename
Returns: A status

The create function is similar to the open function
except that if the device supports filenames then the
file will be created if it doesn't exist, and an error

code returned if it does. It is 1identical to OPEN
CHANNEL for all built in devices except the cassette
driver.

Function 3 - Close channel

Parameters: A channel number (must not be 255)
Returns: A status ¢

The «close function flushes any buffers and de -
allocates any RAM used by the channel. Further reference
to this channel will not be allowed. The devices entry
point is called before the channel RAM is de-allocated.

Function 4 - Delete channel

Parameters: A channel number (must not be 255)
Returns: A status

The destroy function is similar to the close function

except that on a filename device the file is deleted. It
is identical for all built in devices.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 24

Function 5 - Read character

Parameters: A channel number
Returns: A status
B character

The read character call allows single characters to be
read from a channel without the explicit use of a buffer.

If no character
ready.

Function 6 - Read block

is ready then it waits

until one’ is

Parameters: A channel number
BC byte count
DE buffer address
Returns: A status
BC bytes left to read
DE modified buffer address
The read block function reads a variable sized block
from a channel. The block may be from 0 to 65536 bytes
in length and can cross segment boundaries. Note that

the byte count returned in BC is valid even if the status

code is negative,
non-existent channel.

although not if it is an error such as

This allows a partially successful

block write to be re-tried from the first character which

failed.

Function 7 - Write character

Parameters: A channel number
B character
Returns: A status

The write character

function allows single characters

to be written to a channel.

Function 8 - Write block
Parameters: A channel number
BC byte count
DE buffer address
Returns: A status

BC
DE

bytes left to write
modified buffer address

The block write function allows a variable sized block

to

be written to a channel and is similar to block read.

The byte count returned in BC is valid even if the status
~code is negative, provided that control got as far as the
device driver.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 25

Function 9 - Channel read status

Parameters: A channel number
Returns: A status

C 00h if character is ready to be read

FFh if at end of file
0lh otherwise.

The read channel status function call is used to allow
polling of a device such as the keyboard without making
the system wait until a character is ready.

Function 10 - Set and Read Channel Status

Parameters: A channel number
G Write flags

DE pointer to parameter block (16 bytes)

Returns: A status
C Read flags

This function 1is wused to ©provide random access

facilities and file protection on file devices such as

disk or a RAM driver. The format of the parameter block

1s:

bytes: 0...3 - File pointer value (32 bits)
4...7 - File size (32 bits)
8 - Protection byte (yet to be defined)

9...15 - Zero. (reserved for future expansion)

The assignment of bits in the read and write flags
byte is as below. The specified action is taken if the
bit is set.

WRITE FLAGS READ FLAGS
b0 Set new file pointer value File pointer is valid
bl not used (0) File size is valid
b2 Set new protection byte Protection byte is valid
b3sabil not used (0) always 0

This allows the file pointer and/or the protection
byte to be set independently, or just to be read. Not

all devices need to support this function. If a device
doesn't support it then it should return a .NOFN error
code.

ET10/9 Cooyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 26

Function 11 - Special function

Parameters: A channel number
B sub-function number
C unspecified parameter
DE unspecified parameter
Returns: A status
C unspecified parameter
DE unspecified parameter

This function call allows device specific functions to be
performed on a channel. Its use is discouraged as it
necessarily makes the program device dependent,
Typical functions performed by this call would be:

- Display a given page on the screen

- Program a function key

- Flush the network buffer.
Further details of the special functions available can be

found in the individual device driver specifications.

Function 16 - Read, Write or Toggle EXOS Variable

Parameters: B =0 To read value
=1 To write value
= 2 To toggle value
C = EXOS variable number (0...255)
D = New value to be written (only for write)
Returns: A = Status
D = New value of EXOS variable
This function allows EXOS variables to be set or
inspected. These variables control various functions of
the system and specific devices. Note that the value is
returned in D even for write and toggle. A 1list of

currently defined EXOS variables was given earlier.
Expansion ROMs can implement additional EXOS variables
but only in the range 128...255.

Function 17 - Capture channel

Parameters: A - Main channel number
C - Secondary channel number (0FFh
to cancel capture)
Returns: A - Status

The capture channel function causes subsequent read
function calls (read character, read block and read
status) to the main channel, to read data instead from
the secondary channel. When the function call is made
the main channel must exist but no check is made on the
secondary channel number.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 27

The capture applies to all subsequent input from the
main channel number until either the secondary channel is
closed or gives any error (such as end of file) or the
main channel is captured from somewhere else. The effect
of the capture can be cancelled by giving a secondary
channel number of OFFh which is not a valid channel
number.

Function 18 - Re-direct channel

Parameters: A - Main channel number
C - Secondary channel number (O0FFh
to cancel redirection)
Returns: A - Status

The re-direct function causes subsequent output sent
to the main channel with write character or write block
function calls to be sent to the secondary channel
instead. The redirection 1lasts until the secondary
channel is closed or returns an error or the main channel
is redirected somewhere else. A secondary channel number
of OFFh will cancel any redirection of the main channel.

Function 19 - Set default device name

Parameters: DE - device name pointer (without a colon)
C - device type => non file handling
1 => file handling
Returns: A ~=''status

The set default device name function specifies a
device name and (optionally) a unit number which will be
used in an OPEN or CREATE function call if none is
specified by the user. Initially the default name will
be TAPE-1 but will be set to DISK-1 if a disk device is
linked in. The specified device name and unit number are
checked for legality (ie. no invalid characters) but not
for existence in the device chain.

If a string with only a unit number, such as "45" is
specified then the new number will become the default but
the default name will be un-changed.

The "device type" given in register C is simply copied
to the "device type" EXOS variable. This will be zero in
the default machine because the default device is "TAPE"
which 1is not a file handling device. If a disk unit is
connected then the device type will be set to 1.

ET10/9 Copyright (C) 1984 Intelligent Software Limited

11-Sep

Func

-84 (MRL) EXOS - Kernel Specification Page 28

tion 20 - Return system status

Parameters: DE -> Parameter block, 8 bytes.
Returns: A Status code, always 0.
B Version number (currently 1)
DE unchanged

This function returns the version number of the system
and various parameters which describe the RAM segment
usage in the system. The parameters returned are, in
order:

0. Shared segment number (0 if no shared segment)

1l. Number of free segments.

2. Number of segments allocated to the |user,
excluding the page-zero segment and the
shared segment (if there is one).

3. Number of segments allocated to devices.

4., Number of segments allocated to the system,
including the shared segment if there is
one.

5. Total number of working RAM segments.

6. Total number of non-working RAM segments.

7 *** Not currently used ***

Function 21 - Link Device

ET10/9

Parameters: DE - Pointer to RAM in Z-80 space
containing device descriptor.
BC - Amount of device RAM required.
Returns: A - status

The link device function causes the device descriptor
pointed to by DE to be linked into the descriptor chain.
The descriptor will be put at the start of the chain and
any existing device with the same name will be disabled.
DE must point at the TYPE field of the descriptor and the
descriptor must not cross a segment boundary. Once
linked in the user must ensure that the device code and
descriptor are not corrupted until a RESET function call
with bit-5 set (to un-link user devices) has been made.

The amount of RAM requested will be allocated in the
system segment. Whenever the device is called this RAM
area will be pointed to by IY (although it can never
move). IY will point at the byte just beyond the end of
the RAM so if, for example, two bytes were requested then
the two bytes would be (IY¥-1) and (IY-2).

Copyright (C) 1984 Intelligent Software Limited

11-Sep

Func

-84 (MRL) EXOS - Kernel Specification Page 29
tion 22 - Read EX0OS Boundary
Parameters: none
Returns: A - status (Always zero)
C - Shared segment number. 0 . 1if
there is no shared segment.
DE - EXOS boundary in shared segment

(0. 3FFFh)

The read EXOS boundary function returns the offset
within the currently shared segment of the lowest byte
which the system is using. If there is no shared segment
then DE will point to where the EXOS boundary would be if
a shared segment were allocated.

Function 23 - Set User Boundary

Parameters: DE - Offset of new USER boundary.
(0...3FFFh)
Returns: A - Status

The set user boundary function allows the user to move
the USER boundary within the currently shared segment.
If there is no shared segment then this function is not
allowed. The boundary may not be set higher than the
current EXOS boundary.

Function 24 - Allocate Segment

ET10/9

Parameters: none
Returns: A - status
C - Segment number

DE - EXOS boundary within segment

The allocate segment function allows the user to
obtain another 16K segment for his wuse. If a free
segment is available then it will be allocated and status
returned zero with segmant number in C and DE will be
4000h.

If there are no free segments but the wuser can be
allocated a shared segment, then the segment number will
be returned in C and DE will be the initial EXOS
boundary. In this case a non-zero positive status code
(.SHARE) will be returned. The wuser boundary is
initially set equal to the EXOS boundary.

If there are no free segments and there is already a
sharead segment then an negative status code will be
returned.

If this function call is made by a device driver then

the segment will be marked as allocated to a device and a
shared segment can not be allocated.

Copyright (C) 1984 Intelligent Software Limited

11-Sep

Func

Func

-84 (MRL) EXOS - Kernel Specification Page 30

tion 25 - Free segment
Parameters: C - Segment number
Returns: A - status

The free segment function allows the user to free a
16k segment of RAM. The segment must be currently
allocated to the wuser or be shared. The page-zero
segment cannot be freed as it was never allocated
explicitly with an ALLOCATE SEGMENT call.

If this function call is made by a device driver then
it must be to free a segment which was allocated to a
device driver with an ALLOCATE SEGMENT call. There is no
checking of which device is freeing the segment - Devices
are supposed to be well behaved.

tion 26 - SCAN ROM
Parameters: DE = Pointer to application name string
Returns: A = Status

This 1is the function described earlier which allows
the user to cause a ROM scan to occur with action code 2
(or 3 if the first word of the string is "HELP"). This
allows external ROM services to bz used and also to
transfer from one applications ROM to another. Device
drivers are not allowed to make this call.

Function 27 - Allocate Channel Buffer

ET10/9

Parameters: DE - Amount of buffer which must be
in one segment
BC - Amount of buffer which needn't
be in one segq.
Returns: A - status
IX -> Points newly allocated buffer
PAGE1l contains the new buffer segment

The allocate channel buffer function is provided only
for devices and may not be called by the applications
program. It 1is wused to provide a channel with a RAM
buffer when it 1is opened. The "multi segment size"
passed 1in register BC is ignored for non-video devices
since they must have their channel buffer all in one
segment. So for non-video devices BC need not be loaded
before making the call

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 31

Function 28 - Explain Error Code

5.1

ET10/9

Parameters: A - Error code which needs explaining
DE - Pointer to buffer for string (80
characters)

Returns: A =0
DE. - Unchanged
This function allows an EXOS error code to be
converted into a short text message. All external ROMs
are given a chance of doing the translation, and some
error codes are explained by the internal ROM. ILf: the

string returned 1is of zero length then it is an error
code which no ROM was willing to explain.

To ensure compatibility with later versions new error
codes should be below O0COh since 0COh to OFFh are
reserved for internal EXOS use, although not all are used
at present.

Device Driver Interface
Format of Device Descriptors

The format specified here is of a complete device
descriptor in RAM. Whenever a device is entered 1Y is
set to point to the TYPE byte of the descriptor in Z-80
page-2. However the segment containing the descriptor is
not explicitly paged 1in here, since this page must
contain the system segment. In in the case of built in
and external devices, the descriptor will always be in
the system segment and so it will be accesible via 1IY.
This 1is not the case however for user devices since the
descriptor for them could be anywhere. It is assumed
that user devices know where their descriptor is (or else
don't care).

IY - 3 : NEXT_LOW \ 24-bit address of next descriptor in

LY = i2 =i NEXEAE > the chain. The address will be in

IY - 1 : NEXT SEG / 2-80 page-l. End of chain marked by
Segment number 0.

IY + 0 : TYPE - Must be zero. To allow for future

expansions.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Kernel Specification Page 32

IY + 1 : IRQFLAG - A byte specifying which interrupts
this device should service. If it is
zero then the interrupt entry point
(see below) need not be valid. The
layout of the byte is:

bl - Set for servicing sound interrupts
b3 - Set for servicing 1lHz interrupts
b5 - Set to service video interrupts

b7 - Set to service external interrupts
b0,2,4 & 6 - unused, must be zero

IY + 2 : FLAGS - General flags byte. Currently only
one flag defined:
b0 - Set if device is video device.
Channel RAM must be in video RAM.
bl-b7 - Unused - must be zero.

IY + 3 : TAB_LOW \ 24-bit address of the start of a

IY + 4 : TAB_HI > table of entry points to the device.

IY + 5 : TAB SEG / Must be in Z-80 page-l.

IY + 6 : UNIT_COUNT - How many unit numbers this
device can serve. See text for
details, =zero for all built in
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>