l16-Jan~85

1. INTRCDUCTION

EXQS is the extandable operating system for
ENTERPRISE micro-computar. It provides an intar
between an applications program (such as the IS-
interpreter) and the hardware of the machine. The

EXCS 2.1 - Kernel Specification Py

BAS IC
maln

h
C

w W
[00]

i

features of EXO0S are a channel based input/cutput system

and sophisticated memory management facilities. The
system allow device

I/0

independent communication with a range

cf built in devices and also any additional device drivers

provided by the user.

The built in devices included with the EX0S kern=l

the ENTIZRPRISE ROM, ar=: o
1 Video driver providing text and graphics handling.
2. Keyboard handler providing joystick, autorepeat and
programmable function keys.
3. Screen editor with word processing capabilities,
4. Coemprehensive fZour source stareo sound generator.
5. Cassette tape file handler,
5. Centronics compatible parallel interface.
7. RS232 type serial interface.
8. Intelligent Net thrze wire network interface.
This document describes the EXCS kernel, which

interfaces
devices, providing memory management and various

between an applications program and the various

orther
facilities. It explains the action of ths kernel from the
point of view of both devices and applications programs.
The built in device drivers themselves are each descriked
in separate documents, some of which make reference fo the

kernel specification,

It is 1intended that, along with the various Ade
driver specifications, this  document ' will ohete;
sufficient information for writing appllcations prog

using EX03, or for writing new EXQS device drivers.
details in this document apply to EXCS versicen 2.1.

_ UeT oW VERSVWONY 2O

ET10/12 Convriaht () 1985 Intelligent Scofowarz L1

Jhce
vide
rams

Al

t-

i



i6-Jan—-85

2.

EX0OS 2.1 - Kernel Specification Page 2

OVERVIzW OF THE EXOS ENVIRONMENT

When EXOS is running, there is always a "currant
applications preogram" which has overall contrel of the
machine. This program can call EXOS to make use of any of

its facilities, such as channel I/0 or memory allocation.
In the standard machine the current applicaticns program
will be either the built in word processor (WP) program or
the IS5-BASIC interpreter cartridge, although it could be
any other cartridge ROM or cassette loaded program i1n RAM.

Throughout this document the term "ugser™ is used to
refer to the current applications ovrogram, since this
program is using EXOS.

The EX0S Input/Output system

As mentioned before, the EXCS I/0 system is provided as

a sebt of device drivers. & device driver is a piece

of
code containing all the necassary routines to control the
device i1t 1s serving, and provide a standard interface to
E40S.

A device driver might not in fact control a physical
device Dbut may provide devigce-like facilities such as
rzading and writing characters, purely in software.

When EXOS starts up it locates all the built in device
drivers and makes an internal list of them, The list also
tnciudes device drivers contained in any expansion RCMs
wnich are plugged in. The user can link in additicnal
devices ({(Xnown as user devices) which are added to the
list. Each device in the list is identified by a device
name such as "VIDEQC", "NET" or "KEYBOARD",.

The I/0 system is channel based, which means that in
order to communicate with a device, a channel must first be
ovened. A channel is opened by giving the device name and
a one byte channel number to EXO0S,. This establishes a
communications path to the device along which characters
can be transferred in eilther direction, either singly or in
arbitrarily-sized blocks, and special commands given to the
device, simply by specifying the channel number.

For a file based device (such as cassette tape or disk)
a channel would be opened to do a single file transfer and
then c¢losed again. For non~file devices (such as the
keybocard) a channel would probably be opened and then
remain open for all future accesses.

EXC0S allows many channels to be opened simultaneously to
a single device, although some devices themselves will not
allow this. For example the video driver allows any number
of channels cpen to it but the kevboard driver allows o¢only

one. Channels remain open until they are explicitly closed
by the user.

L 2%

-9



l6-Jan=85 EXCS 2.1 - Kernel Specification Page 3

When a channel 1s opened, EX0OS takes care of al
any RAM which the device might need for bur
variables.

2.2 Memory Allocation

In order to understand the memory allocation facilities

of EXO0S it is first necessary to understand the hardware
memory organisation on the Enterprisa.

2.2.) Memory Segments and Pages

The Enterprise uses a segmented memory scheme
to extend the addressing capability of the z-80

kilobytes to 4 megabytes. The segmenting scheme
on léx segments.

in orde
)

The 2-80 address space is divided up into f
"pages®, numbered from zero to three, The addres
these four pages are:

Page-0 0000h -~ 3FFFh
Page-1 4000k - 7FFFh
Page-2 8000h = BEFFFh
Page=-3 C00Gh - FFFFRh
The 4 megabyte address space is divided up intoc 256
"segments®, each segment being l6k. Every l16x section of
memory in the system thus has its own "segment number" in
the range {00h - FFh]l. The segment numbers for certain
gsactions of memory are permanently defined:
Internal 32k ROM N Segments 00h and 01lh
64k Cartridge slot - Segments 04h to 07h
Internal 64k RAM - Segments FCh to FFh

2nd internal 64x RAM - Segments F8h to FRh

Assocliated with each of the four Z-80 pages there is a
8-bit "page register” on a Z-80 I/0 port. The ¢ontents o

these registers define which of the 256 possible segments
are to be addressed in each of the 2Z-80 pages. Thus any
segment can be addressed in any of the 2-80 pages simply by
putting its segment number into <the apopropriata page
register, One segment can be simultanecusly addressed in

two or more pages if desired by putting the same value into
several of the paging ragisters,

t4 3

The four internal RAM segments (segment numbers FCh o
FFh) are the only ones which the NICK chip can adédress for
generating video displays. For this reason they are
referred to as the video RAM. They are also slower =0
access than all other memory since any 2-80 accesses to
them are gubject to clock stretching to sychronise with the

NICK chip accesses.

. s . . =
Inba I W e Mt richt (MY T Trb el dmpnt S Floraen 7o ans oS



5 =55 EX05 2.1 - Kernel Specification Page 4

2.2.2 User Segment Allocation

When EXOS starts up it locates and tests any RAM
segments which are available and builds up a list of them.
When 1t passes control to the user, it will do so by
putting the appropriate segment (usually a ROM segment)
intoc 7%-80 page-~3 and jumping to it,. At this stage the
contents of pages 1 and 2 will be undefined, Dbut page-0

will «contain a RAM segment, known as the '"page zero
segment®.

he first 256 bytes of the page zero segment contaln
' system entry points and system c¢ode, and also
aln arasas which are reserved for CP/M emulation. The
the page zero segmeni 1is not used by the system and
completely <free for use by the user. Because of the
entry points, which include an interrupt entry

the page zero segment should always be kept in 2-80

o (o

o
ot o o¢or ¥

u

i_‘

o0

9]

Dort
3

It (D

w O G
n

T D N -
[Tolun =
D

o~
[}

If the user reaguiras more RAM then it can ask for
additional segments from EXOCS. It will be allocated other
RAM secgmants from the list unless there are none left. It
can ailso free a segment which it has been allocated when it
does not need it any more. These additional segments will
not be explicitely paged in by EX0S, it is up to the  user
to page them in {(usually into pages 1 and 2) when

it needs
Lhem.,

It 1is possible for the user to be allocated a ™shared
segment”, This 1s a segment of which the user is only
allowed to use part, the rest being used by EXO0S. This
15 explilained in more detail in section 5.3

2.3 EXOS RAM usage and Channel RAM

Segment number (0FFh, which 1is one of the videc RAM

segments, 1s always used by EXO0S and is therefore known as
the "System segment™. The details of what this segment is
used for are given in section 5.4 but it includes RAM areas
for system variables, svystem stack, built in device driver
variaples, line parameter +table, 1lists of RAM and ROM
segments, the list of available devices and RAM allocation
for extension ROMs. These RAM areas start at the top of

the segment and use as {ar down as necessary.

Below this system RAM allocation is the channel RAM
area. This contains an area of RAM for every channel which
is currently open. The size of each RAM area is determined
by the device when the channel is opened and may be any
size from just a few bytes up to several kilobytes, Thesa
channel RAM areas always start in the system segment but
can occupy any number of other segments. The RAM for any
given channel is de-allocated when the channel is closed so
this memory allocation is not permanent.

b Copyright (C) 1985 Intelligent Software Limited




l6-Jan=85% EX0S5 2.1 - Kernel Specificatien

2.3 System Extensions (ROM and RAM)

When EXOS starts up, as well as making a list of all
available RAM, 1t also looks for any extension ROMs which

are plugged in and builds up a list of these. Each of
these ROMs may contain EX0S device drivers which will bhe
linked into the system just like built in devices. Each

ROM als¢ contains an entry point which is used for several
purposes,

Each ROM will be given a chance to become the currant
applications ROM at startup time. If no ROM takes up this
cpportunity then the 1internal word processor will tzaka
CONErol:.

At certain times an "exXtension scan® will be done which
gives each ROM in the list a chance to carry out scome

service, This allows ROMs to provide additional error
messages, help messages and various other system functions.
An extension scan can be initiated by the user oprogram
which will pass a command string to each ROM in turn. This
allows an extensicn ROM to provide some service or carrcy
out a command and then return to the main applications ROM,
This facility can also be used to start up another RCM  ae
the current applications program,

There 1s a facility in EX0S for the systzm to loa
programs into system RAM (ie, RAM which is not allocatad to
the user) and link these into the list of ROMs. Thus i
the facilities which are available to extension ROMs r
alsc available to code loaded into RAM. Thaese A
extensions can be loaded either into a complete 16k segment
each, or 1if they are supplied in a relocatable format,
several of them can be put into one segment thus raducing
the amocunt of RAM which is used up in this way.

s T
< 1~

s

ET10/12 Conyright (C) 1285 Intelligent Sof<ware Limitaed



3.

s
|
[es]
(W]

EX0S8 2.1 - Kernel Specification Page 6

SYS5TEM INITIALISATION and WARM RESET

3.1

Cold Reset Segquence

A cold reset is done when the machine is first powered
on, and when the RESET button is pressed, unless the user
has set up a "warm reset address”™ (see section 3.2). It
completely restarts the system, losing anv information
which existed bkefore the reset.

A c¢old reset first does a checksum test of the internal
32k ROM. If£ this is passed it then locates any RAM in the
svystem. It searches the whole 4-megabyts address snace
apart from the internal ROM and cartridge slot (segments 00
to 07y, it examines each l6k segment in turn, doing a
memory  test on each one, If a segment passes the memary
test then 1t will be added to the list of available RAM

There is no test for RAM reflections so anv
RAM must be decoded fully. The memory task
any data which may have been in the RAM segment

0
T
9]
=
0
o}
r rf
o w
:jo

cr i

Sy
0o o w
n

=<
471
-t

e

[V B

HO R STI(Y
D A

<

-

r{

Aftar the RAM test, the 4-megabyte memory space is then
searched for extension ROMs. The ROM search will only find
ROMs 1n segment numbers which arz multiples of 16. This
means that extension ROMs have to be decoded only to 256k
poundaries, but can reflect throughecut this 256k space. &an
exception 1s made for the cartridge slot in that all four
se2gments are examined for ROM, but a test is done to ignore
rzfiections by checking that any two ROMs in the cartridge
slot are different. The details of extznsion ROMs are
explained in section 6.3 and chapter 9.

Having creatad the ROM list, various internal variables
are set up, 1including the system entry points at the start
of the page zero segment. The remainder of the I/0 system
1s tnen initialised by linking in and initialising all the
buile in and extension devices and initialising all
extension ROMs as will be explained in more detail later
on. The copyright display program is then entered which
displays a flashing "ENTERPRISE" message and an Intelligent
Sofiware copyright message on the screen, until a key is
prassed by the user. This display and waiting for a kev
can oe suppressed by an extension ROM setting the variable
CRDISP_FLAG to a non-zero value when it is initialised.

When a key is pressed, the display will be removed and
the system will call each extension ROM in turn with action
code 1 (see chapter 9 for explanation of action codes).
Any ROM which wants to set itself up as the current
applications program simply does an "EXOS reset” call (see

sections 9.3 and 11.2) to claim the system and then has
Ll eehtrols

1T s - b S LY - AT e - R .




l6-Jan=-835 EX0OS 2.1 = Kernel Specification Page 7

3.2

Warm Reset Seguence

A warm reset 1s performed when the RESET button on the
machine 1is pressed, II the user has set up a warm resec
address, and L1f the system variable area has no:t Dpeen
corrupted. A warm reset address can be set up simply by
storing the address in the variable RST_ADDR which is in a
defined place in the system segment, The address storad
must be in Z-80 page~0 and will be jumped to when the warm
reset seqguenge is complete, The warm reset routine will
thus always be in RAM since the page zsro segment is RAM.

A wWarm reasset does not do a RAM test or a ROM

search,.
A1)l memory allocated to the user is undisturbed and ans
system RAM extensicns or user devices which are linked in,
remain, However all channels are forcibly clesad and allx
devices are re-initialised, any RAM which was alloczzed to
channel RAM areas 1s freed. The details of this will bhe
explained later on (in £fact an "EXQS reset" call is
simulated with the reset flags set to l0h - sea section
dak udih ¢

EX0S will set RST_ADDR back to zero bhefora jumpming to
the warm resat address. This ensures that 1f the svstem
has crashed then a second press of the reset button will do
a cold resat, Alsc, as long as the user walts for a shor%
time before setting i%ts warm reset addrass up  acalin,
pressing the reset button twice guickly will alwavs do a
cold reset.

The code at the warm reset entry point will be eancarad
exactly as if it had just done an "EXOS reset® call so ir
will have to set up its stack vpointer and ra-snable
interrupts (see section 11.2). The contents of Z-30 pages
1, 2 and 3 will be un-defined so the user mus:t resar *“hose
for himself,. Particularly, in the case of a ROM
applications program which normally runs with its RCM  in
page-3, it will have to page its own ROM back in. This

means of course that the applications program must have
stored its segment number in the page zero segment ip order

for the warm reset routine to restore it. Also noue that
any software or hardware interrupt address (described in
section 4.2) which may have been set up will have bhaen

lost, and so these must be set up again.

ETL0/12 Convriaht () L1985 Intelligent Sofcwars Timi-=A3



16-Jan-35 EX0O5 2.1 - Kernel Specification Page 8

APPLICATIONS PROGRAM INTERFACE

The first 256 bytes of the page zero segment, which
always resides in Z-80 page-0, are laid out as follows,

Ft e e e e e e e e
00h | Reserved for CP/M emulation |
' e e T el sLeete Tt SU T S SRS
08h | Free I
e e s S S S S
10h | Frae
it T Rt SOt SO R
18h | Free
R T e et T T TV KU b
20h | Free
e e e e e e e e
28h | Free [
o e e e e A e e 1S E
30n ! EX0S system call entry vector l
v o o e e e e e e R
38h | Interrupt vector | Soft ISR ad. | l
L e e S RS +
40h i |
wda
48h | Regserved for EX0S code/data
“+ +
50h [ [
+ itk st L SR WP
58h i | |
e e e e e e +
60h | |
+ Reserved for CP/M emulation +
68h [ |
+ (Default FCB} +
70h 1 |
+ +
78h | |
e i e e Tt ST ST AU
8Ch |
. Reserved for CP/M emulation "
. i (Default buffer ar=a}
F8h |
o e e e e e e —
The areas which are listed as reserved for Cp/™M

emulation can be used by any programs which do not require
CP/M compatibility, but are never used by EXOS. The system
entry points are described below.




16-Jan=~85 BXQS 2.1 - Kernel Specification Page 9
An applications program 1s started up by being entered

at its entry point address with a certain actlion code

and
possibly a command string (see section 9.2). Tc take
control of +the system, the user must do an "ENOS resetg®
call with the reset flags set correctly depending on tnae

action code {(see sactions 9.3 and 11.2). Having done this
call, the user must set up his own stack and then enable
interrupts. It then has full control of the system,

The segment with the applications pregram code in, for
example the cartridge ROM, will always be entered in 2Z-80
page-3 hy 0SS and generally it is c¢convenient to leave it
permenantly in page-3, although it can be moved if desired.

Wwhen an EXOS call is made, or an interrupt occurs, then
contents of pages 1, 2 and 3 will be changed, vpossibly many
times, but will always be restored to their original

segments before returning to the user. Thus whatever
paging the user sets up will be preserved by all EXOS calls
and intarrupts.

4.1 EXO0S System Calls ~ General

An EX0S «call 1is made by executing a "RST ich"
instruction. The arez from 30h to 53Bh contains code
handle +the transfer of control to the main EX0S RoM  and
also to handle the raturn to the user. This entirz area
should not be modified by the applications program at all,
except for the softwara intarrupt address at 3Dh and  3%h
{descrinbed in section 4.2.2).

to

The different EXCS calls ar=z defined by a one byte
function code which immediately follows the “"RST 30n"
instruction. Parametars to the EXQ0S calls ara passed in
registers A, BC and DE, and these registers are also used
to return results. Register A always returns a status
value which is zero if the call was successful and non-zero
if an error or unusual condition cccurrad. Theare 1is a
function c¢all which will provide a imple text string
explanation for these status codes.

Registers AF, BC and DE will not be preserved by any
EX0O5 calls except 1n certain specific cases which ars nozed
in the detailed descriptions of the galls in c¢haptar 1L,
The contents of all cther registers, (ML, IX, IY and *=he
alternats register set including AF'), and of the four 2-80
page registers, will be preserved by all EXO0S calls, except
in a few specific cases which are also notad iz the
detalled functional descriptions,

L

ET10/12 Copyright (C) 1985 Intelligent Software Limited



15-5an~85 EX(OS 2.0 - Kernel Specification Page 10

EX0S always switches to an internal system stack in the
system segment whenever it is entered, and therefore uses
very little space on the user's stack. However, at least 8
bytes snould always Dbe avallable beyend the top of the
stack. Even 1f no EXOS calls are made, this space is
required for interrupt servicing. The program stack should
also be managed correctly such that there 1is never any
wanted information above the stack pointer, it can be
anywnere in Z-80 memory, provided it is in RaM of course.

The system calls will be explained in more detail

later
but here is a list of them all with their function codes.
Code Function
o System reset
X Open channel
2 Create channel
3 Close channel
4 Destroy channel
3 Read character
6 Read block
7 Write charactar
8 Write block
9 Channel read status
10 Set and read channel infeormation
11 Perform special function on channel
16 Read/Write/Taggle EXOS Variable
17 Capture channel
i8 Re-~diract channel
19 Set default device name
20 Return system status
21 Link device
22 Read EX0S boundary
23 Saet user boundary
24

Allocate segment
25 Free segment

26 Scan system extesnsions

27 Allocate channel buffer (device only function)
28 Explain error code

29 Load module

30 Load relocatable module

31 Set time

32 Read time

33 Set date

34 Read date

ET10/12 Copyright (C) 1985 Intelligent Software Limited



S

lé=-Jan=-85 EXQOs 4.4 = Kaernel Speclfication Page Ll

Function calls 1 to 1l are device calls. They each take
a channel number in register A and the call will be passed
on by EXOS to the aporopriate device driver for

chat
channel. Almost all of the other functicns arz handled
entirely within the EXOS kernel. The excepticns are: "Scan

system extensions" (code 26} which i1s an explicit regquest
to pass a command string around all ROM and RAM extensions,

and "locad module" (29), ‘“explain error code" (28) and
"read/write/teoggle EX03 wvariable"” (16) which will offar
their parameters to any extensions if <they are not
racognised.

When a device or system extension has control as
result of one of these calls being made, it is able to mak
its own EX0OS calls. In this way EX0OS5 1s re-entran:z,
although there are some limitations on this, Device
drivers are not allowed to open or close channels when they
havae control (because of channel buffer moving preblems -
see sections 7.3 nad 7.4). The "allccatz channel buofizrx®
call (code 27) can conly be made by a devica during an open
channel call, the user should never maks this call,

a
a

The EXO0S c¢zlls which can result in nested EXO0S c¢alls
being made carry out stack checking to ensurs that the
internal system stack does not overf{low. This effzcrively

limits the depth of nesting allowed although thers
absolute limit of 127 levels beyond which the system will
not work. It is difficult to imagine this depth of nesting
being reguirad.

Hardware and Software Interrupts

EXOS uses hardware interrupts to keep 1ts clock/
calendar up to date. Each device driver can alsc have an
interrupt routine which EX0S will call whenever a spacified
type of interrupt occurs. Details of this are given wikth
the explanation of device descriptors.

2.1 User Hardware Interrupt Routine

Thz user can specify the address of an interrupt service

routine simply by storing the address in the wvarliable
USER_ISR in the system segment. By default this variable
is 0000h which means no user interrupt routine. The

address must be in the page zere segment.

The user's routine will be ¢alled on
interrupt with register D having a single

very 7~-80
- N
indicate the scurce of the interrupt:

=l COo

o

U

5
d

bl - Sound interrupt

b3 - 1Hz interrupt
b5 =~ Video interrupt
b7 - External (network) interrupt

BTL0/12 Capyright (C) 1985 Intelligent Software Limited




16-Jan—-85 EX0OS 2.1 - Kernel Specificatiocn Page 12

' The contents of 2-80 page 1 will be undefined and can be
. changed. Pages 2 and 3 must be preserved, and page~2 will
; always be the system segment containing the stack. Page
! zero will contain the page zero segment and must of course

! be preserved. All of the 2-80 registers, including the
| index registers and the alternate register set can be
| corruptad by the user's routine since EX0OS will already

i have saved them. The user's interrupt routine should not

! attempt to reset the interrupt hardware in the Dave chip as
EX0S will do this when the user returns.

|

, The user's routine is called before any device interrupt

| routines, so the user can respond guickly to interrupts.

| Nota that the interrupt routine address 1s zeroed by any

j tem resaet, elther from a "reset EXOS™ call or from a

warm raset and will thus have to be set up again.
&

N vsa w\‘q-m‘fup%‘- roul e A war . LSR
Vcar'\c't\o\w- LYwvn AJCASo 2O

4.2.2 Scftware Intarrupts

ot

S5WV3ST
=

Softwarea interrupts provide a way for the user to be
aierted to various events occuring within EX0S. A software
intarrupt is triggered by a device driver's interrupt
routine detecting some special occurence, such as the
netwcrx driver having received a block of data from the

network. When this occurs the device stores a "software
interrupt code” in the variable FLAG_SOFT_IRQ which is in
the system segment, This code indicates what the reason

for the sofiware intesrrupt was.

Nothlang else cccurs until EXOS is about to return to the
user, which may be directly from the interrupt routine or
may be very much later L1f the interrupt occured while a

device driver was executing. At this time a software
interrupt will be carried out if the user has defined a
non~zero "software interrupt address"”. This address is

defined simply by storing the address at 3Dh and 23FEh in
page=0, which is in fact the operand of a jump instruction.

The scftware interrupt is carried out by EXOS jumping to
the software interrupt address (which can be in any 2-80
page) instead of executing the nermal "RET" instruction
which would return to the user. The environment will be
exactly as it would be if the return had been made, with
the correct paging and stack pointer, The return address
will still be on the stack so the software interrupt
routine may return to the main program. If it does return
then ALL registers must be preserved, as it could be
interrupting any point in the user's program.

I+ is not necessary for the software interrupt routine
te return if it deoesn't want to, it can cause gome sort of
warm re-start of the user's program.

ET10/12 Copyright (C) 1985 Intelligent Software Limited




l6=-Jan~85 EXOS 2.1 - Kernel Specification

The software interrupt routine can find out the software
interrupt code by reading an EXO5 wvariable CODE_SOFT IRQ.
This is in fact a copy of the code set up by the device
since the code itself is reset to zero before jumping

to
the routine to prevent multiple responses to the software
interrupt. If more than one software interrupt occurs
before the software interrupt routine can be called then

only the most recent one will be acknowledged.

All sources of scftware interrupts from built in devices
can be enabled or disabled by setting appropriats EXOS
variables, or making special function calls. The

ccdes
from built in devices ar=:
l0h...lFh = ©2PFKEY.... Keyboard function key ocrassed
<0h - ?S5TOP Keyvkoard STOP key pressed
2Lnh - ?PKEY Keyboard any key pressad
30h ~  ZPNET Network data raceived
40h -  2?TIME Timer EXQS varlable reached 0

4.3 The STO? key

The stop key is one of the possible sources of scftware
interrupts in EXO0S. However it is rather a special

casa,
The reason for this is that pressing the STOP key should
always cause an immediate, or almest immediate resoonse.
However, tha system 1is fregquently waiting in a device

drivaer for something to happen (such as the editor waiting
for a key to be prassed), or is just doing something which
will take a long time (such as the video driver doing a
£iL1). In these cases 1f the STOP key only caused a
software interrupt there would be no ilmmediate response.

The solution to this is that whenever any device 1is
doing something which 1is potentially a slow,

Qr non-
terminating process, it checks the value of FLAG_SOFT_IRQ
periodically. If it contains the code ?S5TOP then tne STOP
kxey has heen pressed. The device then immediately, or at

least soon, returns back to EX0OS with a status code .5T0P,
Eventually this c¢ecde will £ind its way back to the
user and the software interrupt will occur.

In fact in scme cases the situation is worse than
because it is necessary to interrupt a process which
with normal EXO0S interrupts disabled, so the kevboard
not being scanned. aAn example of this is the
driver writing or reading from tape. However
cases the device ltself contains code to loox at

key and will cause both the scftware interrupt, and <«
error return itself.

=
o ]

ET10/12 Copyright (C) 1985 Intelligent Software Limited



1n-gan—-45 ELGS 2.1 - Kernel Specification Page 14

5.

Ut

SEGMENT ALLOCATICN

—

Segment allocation was explained briefly in the system
overview (chapter 2) and will be described in more detail
here. At cold reset time, EXOS builds up a list of all
avallable RAM segments, testing each one. The system will
not function unless at least 32k (two segments) 1is

avallaple, and this must include segment O0FFh which will he
the system segment.

The lowest numbered RAM segment is taken ocut of the list
and used as the page zero segment, This segment is never
used in any form of allocation, it remains in Z-80 page-0
for evermore.

Fho [}

ach RAM segment in the list can be in one of

five
erant states which are:

dirf
Frae
Allocated to the user
Allocated to the system
Allocated to a device/extension
Shared between the system and the user

The number of segments in each of these catagories can
be detarmined by making a "return system status®™ FX0OS call
(code 20}, which is explained in section 11.18.

The system segment (segment O0FFh) is always elither
a.located to the system or shared, it can never be frea.
all other segments are initially free except for the page
zero segment which is cutside this allocation scheme.

User and Device/Extensicn Segments

When the user makes an "allocate segment”™ EX0S ¢all
(code 24), 1if there are any free segments then one of them
will be marked as allocated to the user and its segment

number will be returned. The user can obtain as many
sagments a&s he likes in this way, limited only by the
aumber of segments avalilable. He can also £frae any

segments which he has been allocated by making a "free
segment" ZX0S call (code 25).

Segments can become allocated to devices/extensions in
several ways. A device driver can make an allocate segment
call in the same way as the user, and if a segment 1is
avallable it will be marked as allocated to a
device/extension. Also a device can free segments in the
same way as the user, Device/extension segments can also
become allocated when a system extension is loaded (see
section 10.5), or at startup time when an extension ROM is

linked in (if the ROM regquests any page-l. RAM - see section
a.2.7).

T10/12 Copyright (C) 1885 Intelligent Software Limited



16~Jan=-85 EX0S$ 2.1 - Kernel Specification Page L5

Any segments allocated to devices/extensions or to the
uger will remain allocated after a warm

reset, Alsac
device/extensicon segments (but not user segments) will
remain allocated when a new applications program is started
0P Great care mnmust be taken with any device that does

allocate RAM segments to itself, to ensure that they
frzed when the device has finished with them.
care must be taken with deviee initialisation since a
device ¢an be re-initialised and will still have the
segments allocated, so it must remember this and not try to
allocata itself new segments,

area
Particular

Whenever a user or a device/extension segment
requested, the lowest numbered available segment will
allccatad. This ensurss that the video segments, which
nave high numbers, ars kept as much as possible for the
system so that they will be available for video chanaels.

1is
ba

(531
3N

System Segments and the EXOS Boundary

Segments which ars allocated te the system are ba
used for channel RAM araas. The system uses RAM s
at the top of the system segment, down as far as nec
possibly continuing into other segments. The top oL the
system segment is used for system variables, systam stack,
device RAM areas (sez explanation of devices and device
descriptors) and RAM areas for extension ROMs. 2l of
these must be contained in the systam segment. Below these
there 1is a chain of channel descriptors, each with an
associated RAM area, which can occupy as many segmenis as
necessary. This will be described in more detail latar

= s

O rw

any segments which ar=z used for channel RAM are marXed
as allccated to the systenm, Each segment is used from th
top down until it becomes full, at which time another
sagment 1s allocated. Thus all system segments will Dbe
fully used, except for the last cne which may have some
space left in the bottom. There is a system variable the
"EX0S boundary” which indicates the lowest address in the
last system segment which 1s belng used. This value can be
read by doing a "read EXCS boundary" call (code 22) which
returns a value in the range [000Ch to 3FFFrhl.

New system segments can be allocated when a channel 1s
opened or when a user device or system extension is
in. When a channel is closed and the associated ¢
RAM 1is freed, this may result in the channel RAM usag
moving out of a segment, in which case the segment will be

3

freed and the EX0S boundary set up for the previou
segment.

BET10/12 Copvriaht (C) 1985 Intelligent Scftware LiIm

it
(n
[

=



3
=3

L §=.am~0 2 EXO0S 2.1 - Kernel Specification Page 156

L

24058 always allocates the highest numbered segment
avaliable when it needs a new segment for the system. This
ensures that as much contiguous video RAM as possible 1is
availaple for video channels, since video segments are the
nighest numbered. If a video segment becomes free while
the system 1s using a ncon-video segment then the two will
om  swapped, although this will only be done next time

a
channel 1s opened.
The Shared Segment and User Boundary
There can be at most cne RAM segment which is shar=d

paetween the user and the system. If it exists, +this will
always bpe the last of the segments used by the system ang

will therefore «c¢ontain the EX0S boundary as descriped
apave.

The user will be allocated a sharad segment if he
an "allocate segment" call when there are no free segments
avallable. This fact is indicated by a specific status
code (.SHARE) being returned by the allocate segment call
and the user will also be told the current position of the
EXOS boundary within this segment (see section 11.22). A

device or a system extension can never be allocatad
shared segment.

makeas

a

When the shared segment 1s allocated, a second boundary,
called the "user boundary", is created within the segment,
This 1is 1n addition to the EXO0S boundary and will initially
have the same valua, The user can at any time set a new
pesition for the user boundary by making a "set user
poundarv" call (code 23). The user boundary can be set to
any value from =zero, up to and including the current
setting of the EXOS boundary.

The user can use the segment from the start up to (but
not including) the user boundary. EXOS is always using the
segment £rom the top, down to (and including) the EX{OS
boundary. The ar=2a in between the two boundaries (which
may be zero bytes) i1s no man's land and must not be used
either by EX0C3 or by the user. However EX0S5 may, when iz
ragulras more RAM, move the EZX0S boundary down as far as
the user boundary. Similarly the user may move the user
ooundary up as far as the EXOS boundary when it needs more

RAM, In this way the sharing of the segment between EXOS
and the user 1s flexible and can change.

The segment can become un-shared when a channel |is

closed, if EXGS3 no longer needs the segment. Also the user
can free the shared segment in which case it will be
flagged as allocated to the system. Having freed it, the

user can always allcocate it again of course.

) Copyright (C) 1985 Intelligent Software Limited



16~Jan-85 EX0S 2.1 - Kernel Specification Page 17

Wwhen a channel is opened, if there is a sharsd segment
then the EXQS boundary will usually have to be moved down.
The user boundary should therefore be moved down as tar as
possible befcre opening a channel, to make space. Also, if
a segment has becomes free while there is a shared segment
(it could have been freed by the user or by a device or
extension), then EBEX0S 1is unable to allocate this to the
system, although it can be alleocated te the user. This
means that it is advisable for the user to frea the sharesd
segmeni as soen as possible, maybe copying the contents
inco a new segment, in order to make the best use of RAM.

5.4 System Segment Usage

The system segment has been mentioned several
befora. This section gives detalls of how it is use
certain addresses. Further details of the various se
of RAM which can bes allocatad in it will be explain
the ralevant sectlions.

times
and
ions

a
o
e in

fLo¢t ~

The very top of the system segment contains a

faw
variables which are at defined absolute addrasses and

can
be used either by the user or by devices. Some cof these
have already been explained and others will be mentioned
later. This list just gives the address and name of each

one, along with a very brief description.

OBFFFh - USR_P3 \ These arzs the contents of the four
QBFFEAQ - USR_P2 \ paging registers when EXOS was last
OBFFDh - USR_PL / called. HNeeded by devices when
0BFFCh - USR_ PO / given user addresses.

0BFFA/ Bh ~ STACK LIMIT Used for stack checking by

devices which ne=sd more than
the dafault amount of stack.

OBFF38/9h - RST_ADDR User's warm reset address.

0BFF6/7h - ST _POINTER The 2%-80 address of the status
line memory. The 42 bvtes
from this address onwards ar=
the status line (see video

driver specification).

0BFF4/5h - LP_POINTER The 2-8C address of the start of
the line parameter table (see

=

video driver specification).

0BFF3h - PORTBS Current value of general output
port - 0OBSh. Used by variocus
devices which access this
port. See device driver
specs for description.
0BFF2h - FLAG_SOQFT_IRQ Triggers softwara interrupts.
ET10/12 Copyright (C) 1985 Intelligent Sortware Limited



LB -gian =50 EXOS 2.1 - Kernel Specification Page 13

OBFFG/Lh ~ SECOND_COUNTER l6-bit seconds counter.
O0BFETh - CRDISP_FLAG Flag for suppressing sign-on
maessage,
|
LOBFED/Zh ~ USER_ISR Address of user's interrupt

g service routine, must be in page-0
J and can be 000Ch for no routine.

I\JO VI \,V’\it‘e/( fu»(@“i" (“O\.,.J\lr\\mq_ C?gl s E.Q. . \SQ
Uariable. i wetston 2.0

Balow these fixed variables are all the internal system
varlaples for the EXO5 kernel, and also RAM areas for all
the Dbuillt in devices. These RAM areas include space for
the line parameter table, character font, function kay
strings, sound gueues, etc, as well as variables for each
device. This area also includes space for the EXOS system
stack which 1s used by all devices and system extensions.
The slze of this area is fixed for any one version of EXOS.

Below this fixed arza is the list of RAM segments, and
balow that the list of extension ROMs, both of which vary
in size depending on the number of extension RAM and ROM
units connected. Below these lists is .any system segment
RAM allocated to exXtension RCMs when they are initialised

{see later for explanation). These areas are all set up at
ccld reset time and then remain fixed.

Below this are the device descriptors for all built in
vice drivers and also any device drivers econtained in
xtension ROMs. This includes any device RAM areas
guired by extension ROM devices. Built in devices have
elr device RAM allocated permanently in the fixed RAM
area and so0 do not reguire any RAM here, This area 1is
newly set up whenever a "reset EX0S" call is made, with the
reset flags set to re-link devices (see section 11.2),

which 1s generally when a new applications program takes
conerel.

When a wuser device is linked in, this area will be
extended downwards to include anvy device RAM which the new
device reguests. This will result in everything below this
are being moved down, Onc2 allocated this device RAM

will remain until devices are re-linked, which will destroy
the user device driver.

All of the above areas must lie wholly within the system

segment, Any attempt to allocate RAM which would push them
cut of this segment will fail.

me S0 Arytrr L el MY T O0R Tkl T et D m Flarom e TS
I oo /




l6=-Jan=85 EXCS 2.1 - Kernel Specification Pa

G
v
H
Yo}

Immediately below the user device RAM area is the

start
of the channel RAM area. This must start in the system
segment, but can run down into as many other segments as
reqguired. The channel RAM area includes a channel
descriptor, and a RAM area for each «channel which 1is
currently open. These RAM areas can be moved around by
EX0S when  other charnnels are opened or closed, or user
devices linked 1in. They are explained in detail in the

section on channel RAM allocation.

It is clear from the above descripticn that the sizes
and addresses of most of these areas vary depending on the
hardware and scftwara configuration. However as an examole
the diagram below shows the addresses for a standard 64k
machine with a single ROM cartridge, such as the

IS-BAST
cartridge, fitted. This should only be used as a guide
since the exact sizes and addraesses may vary in fubture
versions. The addraesses are given in 2-80 page-2, since

this 1s where the system segment is normally accessed Dy
EX0OS and devices, although it can of course be paged in to
any of the Z-80 pages.



19-Jan-565 EXO5 2.1 - Kernel Specification Page 20
Address Size
BEEFFh:

. Defined address variables (list above) l i
SFEFh: ]
Internal EXOQS system variables 267
BEE4h
Device RAM areas for built in devices 3212
B258h:
| |
{ Space for EX0OS RAM resident code 60
B21Ch: |
A |
| System stack 1604
ABD6nN:
. |
RAM segment list, 1 byte per segment 4
ABDZh:
Extension ROM list, 4 extira bytes par ROM 12
ABC6n:
RAM areas for extension ROMs 0
Device descriptors for built in devices 132
AB42Z2h:
AB41lh:
: Start of channel descriptor chain

—rat

EaLi0/E2 Copvricht () 1985 Intellicent Softwars T.imitad




16-Jan-85 EX0S 2.1 - Kernel Specification Paga 21

6.

b

DEVICE DESCRIPTORS

6.1

The Device Chain

Every device driver has a "device descriptor™ in RAM
somewhere which defines the device's name, the address of
the device driver code and various other details. They ara
kept in a linked list (called the device <chain), and
whenever a channel ls opened, EX0S searches this list for a

device with the correct name and opens the channel to that
device,

The daevice chaln is re-bulilt whenever a ‘'raeset EXQSH
call is made with the reset flags set to re-link devices
(see section 11.2). This occurs at cold reset time and

when a new applications program takes control. The chaln
is initially created with a descriptor for each of the
built in device drivers, and also for any device drivers
contained in extansion ROMS.

The user, or a systam extansion, can link in new devices
with a simple EXO0S call. These will be added to the device
chain but will be lost when the chain is re-built.

Details ¢f Device Descriptors

The format of a dewvics descriptor is given her=. Each
element is cne byte, apart from the device name which is of
a variable size, The offsets given are offsets from the

DD_TYPE field since this is where the device chain pointers
point to.

= DD_NEXT LOW \ 24-bit address of DD_TVYPE field of

~-2 DD_NEXT HI > next descriptor. Address will be in

-1 DD_NEXT_SEG /  Z-80 page-l. End of chain indicated
by DD_NEXT SEG=0.

+0 DD_TYPE Must be zero.

+1 DD_IRQFLAG Defines device interrupt servicing.

+2 DD _FLAGS b0 set for video devices. bl-b7 clear

+3 DD_TAB_LOW \  24-bit address of device entry point

+4 OD_TAB_HI > table. Address must be in~z-30

+5 DD_TAB SEG /  page=L.

+6 DD_UNIT_COUNT Normally zero. Non-zero to allow
multiple devices with this name.

+7.. DD_NAME Device name string.

The DD _TYPE field is provided to allow for future
expansion and also to enable a device to be disabled. This

happens for example when a new device is linked in with <he
same name as an existing one. The old device will be

disabled (unless DO_UNIT COUNT 1s non-zerc - sae bhelow).

ET10/12 Copyright (C) 1985 Intelligent Software Limited



e
Jn
]
Ty
o
=
|
[0 9]
W3]

EX0S 2.1 - Kernel Specification Page 22

Tne DD_IRQFLAG field has one bit for each of the four
sources (b interrupts in the Enterprise. If the
appropriate bit is set then this device driver's interrupt
routine will be entered whenever an interrupt of that type

OeCurs. Any combination of bits can ba set. The bit
assignments are:

bl - Programmable sound interrupts

b3 - lHz interrupts

b5 ~ Video interrrupts (504z)

b7 ~ External interrupts (network)
£0,2,4,6 - Should be zero.

8ic=0 of the DD_FLAGS byte is used to control channel
]AM allocation, which is different for wvideo and non-video
devices, as explained ina section 7.3.

© entry polint table address (DD_TAB_SEG, DD_TAB_HI and
5_LOW) points to a table of two byfte entry addresses,
o
5

Th

TA

for each function which a device has to perform. The
253

=

0 o

00D

D
N
addr given 1in the descripteor must be in 2-80 page-1
sinc EXQS accesses the table there. However the entries
in the table itself must be in 2-80 page-3 since when EXOS
calls a device it puts the devices code segment in page-3.
The entry points themselves must all be in the same segment
as the entry point table. The entries in the table are

listed here and will be explained in the section on device
drivers.

+0 Interrupt (Need not be valid if DD _IRQFLAG=()
+2 OPEN CHANNEL

+4 CREATE CHANNEL

+6 CLOSE CHANNEL

+8 DESTRQY CHANNEL

+10 READ CHARACTER

+1.2 READ BLCCK

+14 WRITE CHARACTER

+16 WRITE BLQOCK

+18 READ CHANNEL STATUS
+20 SET CHANNEL STATUS
+22 SPECIAL FUNCTION
+24 Initialisation

+26 Buffer moved

The entry points in capitals correspond directly to the
ralevant EXOS calls, the others are generated inside EXOS.

The DD_UNIT_COUNT £ield is normally zero but can be set
non-zerec to allow multiple devices of the same name to be
nandled by translating unit numbers. This is explained
fully in section 11.1.

The DD_NAME field is the device name itself. The first

byte o©f this is a length byte, followed by the characters
of the name in ASCII. The name can be up to 28 characters
long and must consist of upper case letters only.

ET10./.2 Convright (C) 19885 Intelligent Software Limited



l6-Jan=-85 EX05 2.1 - Kernel Specification

g
.
v
v
]
[0S]

6.3 Extension RCM Devices

At offset 0008/9h in every extension RCM is a pointer to
the start of a chain of devices, If there are no device
drivers in the ROM then this peinter should be zeroc. Each
element in the chain is basically a device descriptor as
defined above, but with certain fields missing, or replaced

by other information. The layout of one of these pseudo-
dese¢riptors is:

LL_NEXT LOW \ lé-bit pointer to XX SIZE field of

XX NEXT_HI / next pseudo-descriptor. In 2-380 page-
Z_RAM_LOW b

XX _RAM HI / Amcunt of device RAM regquired.
DD_TYPE N These fields ars exactly as in a
DD IRQFLAG | complete device descriptor dsfined
0D FLAGS | above. The DD TAB SEG field can
DD TAR LOW \ have any value since EX0S fills
DD_TAB HI / this in when it links the device.
(DD_TAB_SEG) ]

DD_UNIT_COUNT i

DD_NAME 7

—==» XX _SIZIE Size of pseudo-descriptor (see taxt)

The device chain pointer at the start of the ROM points
te the XX _SIZE field of the first pseudo-descriptor, in
page-1, Similarly the chain pointer (XX_NEXT LOW and
XX_NEXT _HI) in each pseudco-descripter points to the XX _SIZE
field of the next one, in Z-8%0 page-l. The end of the
chain is marked by a pseudo descriptor with both DD _NEXT HI
and DD _NEXT_ LOW set to zero.

The XX SIZE field is a count of the anumber of

bvtes in
the descriptor from DD _TYPE to the device name. 5L Rb T o
the device name was one character long, DD _SIZE would be 9.

The main descriptor fields (all those starting with DD_)
will simply be copied into RAM when the device is linksd
in, and a three byte link added to the start to creatz a
complete device descriptor. Note however that EXZS Zills
in the DD_TAB_SEG field, since a ROM on the expansion szack
cannot Xnow what segment it will be in, This means <hat
the entry point table must be in the same segment as +the
pseudo-descriptor.

The KX_SIZE _HI and XA _SIZE LOW fields define a l5-bit
number which is the amount of device RAM which this davice
requires in the system segment., This number must be storad
in two's complement and with an offset added to allow for
the three byte link which EXOS puts on the start c¢f the
descriptor. If no device RAM 1Is reguired then the value
should be FFFEh (-2). If one byte is regquired it should be

FPFFDh (-3} and so cn.

rmY N /10 fanyricht (CY 1985 Intellicent Softwara L .mitia

N

I



b3

L5=5an-8§5 EXCS 2.1 - Kernel Specification Page 24

¥3

]

<D

-
e

Wnenever the device is entered register IY will point to
its device descriptor, as will be explained in the section

on device drivers. Since the device RAM is allocated
immediately below the descriptor, the device RAM can be
accessed relative to IY. If "n" bytes are requested then

these can be accessed at addresses:

I¥y-4, 1IY-5, cesey I¥-d-n

Usex Devices

User devices are those which ar=z linked in with a "link
devigce" EXOS call (code 21) which can be made either by the
user or by a system extansion. To link in a user device a
complete device descriphor must be set up in RAM. all
f1elds o©f this must be complete except for the 24-bi- link
(DD_NEXT_SEG, DD_NEXT_HI and DD NEXT LOW).  The EXOS call
15 then made with DE pointing to the TYPE field of this
descriptor, which can be in any 2-80 page.

An araza of device RAM can be raquestad by simply setting
register BC to the amount reguired. This RAM will be
allocated below the device RAM for any ROM extension
devicas, The device driver will be passed the address of
this RAM area in register IX when it is first initialised.

bytas are reguested then they can be accessed at:

IX-1, 1X-2, vy IX~-n

Note that this address will only be passed in IX on the
first initialisation. It is the responsibility of the
device driver to remember the address for future use,

even
when it is re-~initialised such as after a warm reset.

Convricht () 1985 Trptralliaesnt @aftrware Limited




L

in~Jun-8 EXC0S 4.1 - Kernel Specification Page 26

Device driver —routines c¢an corrupt all registers,
including the 1index registers and the alternate register
set, since they will have been saved by EXOS. The device
driver can also corrupt the contents of Z-80 page-l with
impunity, but should exercise caution with the other 2-80
pages. Generally registers A, BC and DE are used to pass
parameters to and return results from the routines.

7.2 Device Initialisation Routine

Tne device initialisation routine 1is passed
parameters {(other +than the segment and address of
channel descriptor in B' and I¥), and returns no results.
I is called when the device is first linked into the
system, and again whenever a "reset EXOS" function call is
made, which o©occurs at a warm reset or when
applications program takes control.

no
the

a new

Any channels which the device may have open will vanish
when this routine is called, and so any variables or data
aroas which the device may keep must be reaset, Noke that
any RAM segments allocated to the device will not be freed,

so +the device must remember that 1t still has these

after
subsegquent initiaslisaticns.

7.3 Channel R2M Allocation

Every channel which i1s open has an area of "channel RAM"
allocatasd to it. it is the Jjob of the "open ¢hannel™ or
"create channel"” routines {described belcow) to make an
"allocate Dbuffer” EX0S call to obtain the required amount
of RAM. The allocate buffer EXOS call itself is described
in section 11.25. This function call MUST be made before
the open or create channel routine returns to EX0S, even 1if
zero oytes of channel RAM are reguired, since it alsoc sets
up a channel descripter for the channel.

When the "allocate buffer” call is made, 1t will return

the address of the channel RAM in register IX. This will
b2 in Z-80 page-l and the correct segment will be paged
into page-i. Whenever the device driver 1is entered 1in
future with a channel call to this channel, page-l and
register IX will be set up correctly. If "n" Dbytes of
channal RAM are allocated then they can be accessed at

addresseas;:

IX“]., IX"’2' «- s o oap IX"n
The 16 bytes of RAM immediately above the channel RAM
e Bl e v o d ARD ) contain a channel descriptor. This

contains system information about the channel and should
not be modified by the device.

BETL0/12 Copyright {(C) 1985 Intelligent Software Limited




l16-Jan-85 EX0S 2.1 - Kernel Specification Pace 27

~J

PO

In the case of non-video devices, the channel RaAM wi_1
all be in one segment. In the case of wvideo devices
however, only a certain amount of the RAM, specified by the
device and starting at IX-1, will definitely be

in cne
segment, the rest may carry on down intoc other segments.
If this 1is the case then each new segment will have a

segment number one less than the previous one and they will
all be video segments (0FCh to 0FFh). This allows a video
device to obtain sufficient RAM for a large idec Dpage.
Normally only the bullt in videg driver will be a

video
device, although any device can make itself one simply by
having a bit set in its device descriptor (see saction
Bad )n
xref 6.2
Once allocated the channel RAM can be moved by Z=X0S.

This «can only occur when another channel is opened or
closed, or a user device linked in. Since devices ar=z not
allowed to make any of these EX0S calls, it is impessible

for the channel RaM to be moved while the device driver

is

executing. Whenever the channel RAM is moved the "buffer

moved" entry point of the device driver will be called,
This entry point is described helow.

The Buffer Moved Routine

The "buffer moved" entry point 1is called by EXQS

immediately after it has moved a channel buffar of this

device, This routine raturns no results but is passed the

following parameters:

b':I¥ = Device descriptor segment & address
IX = New address of channel descriptor,
into Z-80 page-l.
A = Channel number ¢f channel buffer moved
8C = Amcunt that channel buffer has moved

{as usual)
will be paged

The channel buffar may have been moved intoc a g

i1Zfarent
segment., If the device needs to know this then it czn read
the new segment number from the page-l register, Thie
distance moved parametar 1in register BC 1is strictly
speaking & signed l7-bit number, with the sign bit missing.

This means that if, for example, a value of 1 is passed in
BC, then this could mean that the buffer has been moved
elther up by 1 byte, or down by 65335 bytes, In practice
this difference does not matter since it only affects the
new segment number and this can be determined separatelvy.

Whenever the buffer moved entry point is called,
interrupts will be disabled and should not be re-snabled by
the device driver. This is to ensure that the

interrupt routine cannot be called while it
intermediate state.

device's
is in an

ET10/12 Copyright (C) 1985 Intelligent Software Limitad



ETL/12

n=-85 EXCS 2.1 - Kernel Specification Page 28

Device Interrupt Routines

EX0S can handle interrupts from any of the four possible

sources on the Enterprise computer {(video, sound, 1Hz and
extaernal). When an interrupt cccurs, EX0S examines the
DAVE chip to determine which source it came from. It then

scans through the device chain calling the interrupt entry
point of any device which has rejuested servicing of this
type of interrrupt {(by setting a bit in DD_IRQFLAG in 1its
cevice descriptor - see section 6.2). When all devices
have been called, the interrupt is cleared in the DAVE

chip, all registers and paging restored and EXOS returns to
the Interrupted program.

Interrupts are allowed at any time, including while
executing device driver code, except while certain system
variables are being updated or channel buffers are being
moved. Alsc, interrupts are disabled while servicing an
sarliss interrzupt, sSo thers is po nesting of JHterrupts.
2% an interrupt from another source occurs while already
servicing an interrupt then it will be held up until
servicing of the first one is complete. Thus no interrupts
should bhe missed but they may be serviced late.

The interrupt entry point of a device driver is
optional, it is only required {f the DD_IRQFLAG field of
the device descriptor i3 non-zero. When a device is linked
in, EXQ08 will ensure that any scurces of interrupts which
the device wants to service are enabled in the DAVE chip.

The device's interrupt routine will be entered just like

other entry point, with registers B' and IY set up to
device descriptor sacgment and address as usual, No
ts are returned from the ilnterrupt routine and all
glsters can be corrupted (AF, BC, DE, HL, IX, I¥Y, AF',

, DE', HL'). The entry point will be called with
interrupts disabled and they should not be re-enabled,
neither should the device attempt to reset the interrupt
fiag in the DAVE chip -~ EXOS dces that.

5

o}
o

>

N s
0
-

3 iv

There is an EXOS wvariable (see chapter 8) called
IRQ_ENABLE_STATE which defines which of the four sources of
interrupts are currently enabled. Any of them can be
enapled or disabled by changing this EXCS wvariable and
writing it out to the interrupt enable register in the DAVE
chip. This should be done with care since the kevboard

will not be scanned 1if video interrupts are disabled so it
can be difficult to recover from this.

Device Channel Calls

Tne device channel calls are the device entry points
which correspond with EX0S function codes 1 to 11l. Full
details of these EXOS calls can be found in chapter 11l.

This sectlion describes them only froem the device's point of
view.

Cooyright (C) 1985 Intelligent Software Limited



RoR oA WK S ot b

l16-Jan=85 EX0S 2.1 -~ Kernel Specification Pagwe 29
All of these routines have certain parametars an?
results in common. These are: i

Parameters: B':IY
X

tl

Cevice descriptor segment and address
Polnter to channel RAM in 2-80 page-1,

i

A = Channel number +1 (see next paragraph)
BC & DE = General parameters %to routine
Results: A = Status code, returned to user
BC & DE = General resulits from routine

The channel number parameter passed to the d e
routine 1ls one greatar than the channel number as specified
by the user. This is due to the way in which EXQS handle
channel numbers internally, and means that a device
never he passed a channel number of zero.

n

The device driver dces nect need to return with the
status register set depending on the value returned in A
-

The setting of flags is deone by EXO0S before returning
the user.

7.6.1L Open Channel and Create Channel Routines

For most devices the open channel and creata channsl
routines can be the same, The difference 1s only ralavent
for file handling devices, whera "open" is intended to cpen
an existing file and "create" is intended to creata a new
one.

The routine will ©be passed a pointer +to a fillename

string in DE (length byte first). This will have been
copied from the string passed by the user, into a buffer in
the system segment, and will have been uppercased and
checked for syntax and length {maximum 23 characters). =
no filename was specified by the user then this will he
& full StEring.

The wunit number specified by the user (or a defaul<c)
will be passed in register C. Unit numbers arzs explained
in section 11l.1l.

Assuming that the device decides that it will accept the
open channel call, 1t MUST make an "allocate buffer™ call
to setup the channel descriptor and obtain any channel RAM
which it may need for this channel. Details of this call
can ke found in section 11.25. This function call will
return a polnter to the RAM in IX and page 1t into pag=-1,.
This is the only case of an EX0S c¢all corrupting any

unusual registers cor the paging.

B0/ L Copyright (C) 1985 Intelligent Softwara Limited



Lh=Jan-85 EXCS 2.1 - Kernel Specifiication

wmy oy A D

Page 30

7.6.2 Block Read and Write Routines

All devices must provide a block read and a block write
routine, wihich are capable of reading or writing up to
65335 Dbytes, Some devices (such as disk) will implement
these intelligently, doing data transfers directly into the
user’'s buffer. However most devices simply do repeated
calls . to their own character read or write routines,
copying the bytes into or out of the buffer,

Special care must be taken with accessing the user's
fer area. The buffer pointer is passed in DE straight
m the user's call. This may point to any address in any
the four Z-80 pages, and refers to the segment which was
that page when the user called EX0S, not when EX0S
led the device driver routine. The device driver will
refore have to translate this address to cne in 2-80
e~l, and page in the correct segment in order toc access
buffer, but must not forget the segment with 1its
nannel RAM in. in order to detzrmine the segment number,
rour variables are provided in the system segment which
deflne the four segments which were paged in when the EXO0S
call was made. These ara called USR_PO, USR_P1l, USR_P2 and
GSR_P3 their addresses were given in section 5.4.
variables are handled re-entrantly, so they will
nested EXOS calls correctly.

)

[aF IR -
QO th

1

0

G RN NN G BN (NN
] s

he
=i
ne

O«
3

These
survive

Note also that the user’s buffer can cross a segment
boundary and so the segment may need to be changed, and the
address adjusted several times. Also the device should
cope  correctly with a block size of zerc |Dbytes, simply
returning a zero status code without doing anything.

I an error occurs part way through a block read or
writs then registers DE and BC should be returned with
thelr wvalues correctly adjusted to indicate how much

has
been read or written,

£ ey T o e b A FE e Y TOao TR Y

T T - VA, = Ll o iE o 2




16-Jan~85

8. EXOS VARI

The

EXCS 2.1 - Kernel Specification

ABLES

"read/write/toggle EXOS variable”

16), which is described in section 1ll.l4,
e usar, a device driver or a system
a set of system variables without

address. These variables control many apects of the
particularly in setting up

for &n
access
actual
system,
before
relevan
describ
hut a ¢

opening channels to them,

& to particular built
ed in the apvropriate device
omplete list is included here.

in

Each variable has an 8~bit wvalue,

an 8-nit

variabl
there
further

Any
However
somethl
Ngn i} a

EXQ5 wvarilable number.

options
The
devica
driver

for

anes

EXC0S call
provides
extansion, to
knowilng

{code
a way

their

davices

which are

drivers are
specification

and is LG n
This list

-
o]
9]

es which are implemented by the EXQS k
is a facility for system
ones, with numbers above 127

variable can be set to any value from z=sro to
many of the variables act as
In these cases,

nd 255 to “esg". The EX0S ¢all

ng on or off.

extensions
(sem sect

to
ion

switches
Zero corrasponds
o manipulatsa  them

M =t

[No RN TRE i o

o
) Dll’h

3

I

nas a "tcggle™" function which does a ones complement

value

Q -

1 -

-

i R

4 -

5 -
ET10/12

IRQ ENABLE STATE bo -
b2 -
bi -
b6 -

b1,3,5 & 7

FLAG_SOFT_IRQ.

sat
set
3at
set

to
Lo
Lo
Lo

enable
anaple
enaple
enanle

must be zaroc.

devicae to causa a scofitware
could also be set by the user to
software interunt directly.
is also available at a fixed addrass

soun
ldz

vide
exter

"i O o
mi40a4

[

R

and will thus switch from zero to 253 and vics

Lo

ted Dby
2s all
el Dbut
plement
2.4
25z,
turn
[N
.

of the
versa.

o)
D

1]

IRQ.

This is the byte set non-zero by

a
interrunt. It
cause a

This varliable

givan
in an earlier section.

CODE_SOFT_IRQ. Zhis 1s the eopy of the Elag Set by
the device and is the variable that should
be inspectaed by a software intesrr-upt service
routine to determine the reason for the
interrupt.

DEE_TXDE Type of default device

0 => non file handling device (ag. TAPE
L => file handling device (eg. DISK)
CEF_CHAN Default channel number, ZALE  edadnel
number will be used whenever a c¢hannsal
call 1is made with channel number 253.
TIMER 1Hz down counter. Will cause a software

interrupt when it reaches zero and will

then stop.

Copyright (C) 198% Intelligent Software

Limited



el ~J3

.
&

1
'..l

22
23
24
25

27

29
30
31
ol

LOCX_KEY
CLICK_KEY
STOP__IRQ

KEY_ IRQ

RATE_KEY
DELAY_KEY

TAPE _SND

WAIT SND
MUTE_SND

BUF_GSND

BAUD_SER
FORM_SER

ADDR_NET
NET IRQ

CHAN_NET
MACH NET

MODE_VID
COLR_VID
X_S1%_VID
Y 512 _VID

5T _FLAG

BORD_VID
BIAS_VID

VID_EDIT
KEY_EDIT
BUF_EDIT
FLG_EDIT

SP_TAPE
PROTECT
LV_TAPE
REM1
REM2

SPRITE

ey

3w n e b e Sy

EX05 2.1 -

Kernel Specification Page 32
Current kevboard lock status
0 => Rey click enabled
0 => STOP ley causes soft IRQ
<>Q => STCP key returns code
0 => Any key press causes soft IRQ, as

well as returning a code

Keyboard auto-rezpeat rate in 1/50 second
Delay 'til auto-repeat starts
0 => no auto=-repeat

0 => Tape sound enabled

0 => Sound driver waits when gueue full
<>0 => returns .SQFUL error .. & .-
0 => internal sceaker active
<>0 => internal speaker disabled

Sound enveloce storage size in 'phases’

Defines serial baud rate
Defines serial word format

Network address of this machine

0 => Data received on network will cause
a software interrupt

Channel number of network block received

Source machine number of network block

Video mode N\ These variables select
Colour mode \ the characteristics of
X page size / a video page when it

Y page size / is opened

0 => Status line is displayed
Border colour of screen
Colour bias for palette colours 8...16

Channel number of video page for editor
Channel number of kevbcard for editor
Size of edit buffer (in 256 byte pages)
Flags to control reading from editor

Non-zero to force slow tape saving

Non-zero to make cassette write
protected file

Controls tape output level

\ State of cassette remote controls,
/ zero is off, non-zerc is on

ocut

Controls external sprite colour priority



l6-Jan=-85 EX0S 2.1 - Kernel Specificaticn Page 33

!

39 -~ RANDOM_IRQ Incremented on every interrupt. Can be 1
used as a source of random numbars
provided it is only accessead
infreguently.

SPRITE ok GANDom . TR EXOS Uacclles

do ~oT ﬁ%ﬁéﬁﬁl v Vasslon 2.0



o

g

An-85 EXOS5 2.1 - Kernel Specification Page 34

SYSTEM EXTENSICON INTERFACE

j—a

Wnen EXOS does a cold start it builds up a list of all
extension ROMs which are plugged in. Each c¢f these ROMs
has a single entry point which is called under various
cirumstances with an action code to indicate what functicon
the ROM is to carry out. This chapter describes all the
action codes and what the response to them should be.

The first 8 bytes of an extension ROM must contain the
characters "EXOS_ROM" in ASCII. This string is used by the
kernel to recognise a valid ROM at cold stars time,
Following this string 1s the 2 byte address of the first in
a chain of pseudo device descriptors (see section &.3).
“ae next byvte (offset 000ah) is the entry point mentioned
above, Here 1s a summary of the start of an extenslon ROM
10 assembler source form:

CCO00h: DB "EXOS_ROoM"
0cot8h: DW DEVICE_CHAIN ;berc 1f no devicas
0C0QAnQ: sROM entry point

Thera 1is a facility to load programs into RAM and Link
them in as system extensions, as described in section 10.5.
Once loaded these RAM extensions are treated exactly as if

they were ROM extensions, and will only be remcved when

a
cold reset is done.

There 1s an BEXOS call provided to pass a string around
all system extensions to give them a chance to carry out
some function., This results in the extensions being called
with action code 2 (commangd string) or 3 (help string), the
meaning of which will be explained in +his chapter.

Details of the "scan extensions" EXOS call itself arae given
in section 11.24.

Calling System ExXtensions -~ General
g

System extensions are called by the EXOS kernel ang will
always be entered in %-80 page-3 at their single entry

polint. Page—~2 will contain the system Segment (segment
UFFh) which will include the stack, and page~-0 will of
course contain the page zero Segment, ROM extensicns can

be allocated an area of RAM at cold reset time (se2 secticn
9.2.7). The segment containing this RAM will be in page-1,
and 1t will be pointed to by register IY. For RAM resident
eXtensions, page-l and register IY will bhe un-defined.

dote that ROM extensions are allowed to make ‘"scan
extension” EXOS calls while in their M"allocate RAM"
rcutines. This can result in a ROM being entered with
action code 2 or 3 before it has had any RAM allocated.
This case can be detected by testing for segment number
zero in Z-80 page-l, which can only occur before RAM is
allocated, or if no RAM is requested.



16-Jan=-85 EX0S 2.1 - Kernel Specification Page 35

ETL0/12 Convricht (Y 1085 Intellicent Softwares T.im:

An action code 1s always passed 1in register C,

ard
registers B and DE are used for passing various parameters
to, and returning raesults from, the system extansion. All
other registers (AF, HL, X, AF', BC', DE', HL') can ke

corrupted if desired.

System extensions are normally called by doing an
"extension scan”, which may originate from a user EX0S call
or be generated by the kernel. This involves passing the
same action code and parameters to each system extension 1n
turn. If the system extansion returns the acticn code
unchanged, then the values passed back in BC and DE will be
passed on to the next extansion in the list, Thus 1f
system extension does not support a given action code o
command 1t should return BC and DE unchanged to ensura tha
the scan continues,

[RaRa g

If a system extansion returns with registar

C st to
zero then the extansion scan will steop, and the wvalues

returned in registers BC and DE will be consider=d as the
results - the interpretation depending on the action code.
In this case, the value returned in register A i1s a status

coda indicating success or failure using the normal EXOS
status code values.

The extension scan callzs any RAM rasident
first, followed by any extension RCMs. The v
extension in the «c¢hain is the built in weord
program.

Action Cocdes

Belew are detalis of each of the action
values not included here are reserved for
and should ©be ignored by all system extensions, simply
returning with BC and DE unchanged. The action codes ars
described in numerical order although the initialisation
and ram allocation ones are rather special cases.

codes. Any
future ex*tansions

A system extension can ignore any of these action codes
which it wants teo, they are all optional. Any action code
which 1s not supported should be ignored by returning with
BC and DE preserved. It is acceptable (although not very
vseful) for a system extension to consisgt of just a "RET"
instruction at its entry point.

The action codes provided are:

Cold reset
Command string
Help string

EX0S wvariable
Explain error ccde
Load module

RAM allcocation
Initialisation

- 1,

o~ O Un e L o
[ +*

ot
b
q)



Lu=u.

S T 04
vl 'j - LA\

05 2.1 - Kernel Specification Pa

[ta}
D
L
o2

2.1 Action code I - (Cold Reset

This actlon code is passed around all ROM extensions at

cold reset time, when the copyright display program
terminates, 1n order ko allow one of them to select itself
as the current applications program. The only other time

wnen this action code can be received 1s when an attempt to
load a new applications program fails (see section 10.6).
NO  parameters are passed and no results are returned with
this action code. '

If the extension wants to set itself uo as the current
applications program then it simoly goes through the normal
startup procedure (described in secticon 9.3) and dees not
return from this call. If the extension does not want to
do this then it just returns from this call with register ¢
(the action code) preserved.

2.2 Action code 2 -~ Command string

This action code results from a "scan extensions" EXOS
call (code 26). It is passed a pointer to a string in
register DE. This string will have a length byte first and
will Dbe stored in a buffer on the stack, so the "scan
extensions™ call 1is re-entrant. The first word of the
string (up to the first space character) will have been

sppercased and register B will contain a count of how many
bytes there are in this first word.

The f{lrst word is +tne name of a command, service or
program. Each extension will have a set of commands which
it recognises. If the extension does not recognise this
command then it should return from the call, preserving BC
and DE. If it does recognise the command then it should
respond to it, possibly interprating the rest of the string
as parameters, returning with register C=0, and a status

code In A, unless 1t wishes other exXtensions +to also
respond to this command.

In carrylng out the command the system extension can
make any EXO0S «calls required, including further T"scan
extensicn" calls. It i3 often useful to make use of the
cefault channel number for doing screen input/output since
1t cannot know what other channels are available.

ne extension can interpret the command string as a cue
to start itself up as the current applications program,
For example the strings "BASIC", "LISP" and °"FORTH"™ will be
interpreted in this way by the appropriate language
cartridges. In order to do this the extension behaves
exactly as 1f it had received action code 1 (cold start),
except that a different setting of the reset flags is used
(see section 9.23).

2 Copyright (C) 1985 Intelligent Software Limited




16-Jan-85 EX0S 2.1 - Kernel Specification Page 37

9.2.3 BAction code 3 - Help string

This action code alsc results from a "scan extansions”
EX0S call, where the first word of the string was "HELP",
The "HELP" (and any tralling spaces) will have been removed
from the string and then the rest of the string treated
exactly as 1f it was the original string passed to the EXOS
call. The parameters for this acticon code ars thus

|

identical %o those for action code 2 {(command string)
described above.

If the string is null (register B will be =zeroc), then
this is a general HELP call to all extensions. In this
case the extension should just write 1ts name and version
+o the default channel {using channel number 255} and
return with BC and DE preserved.

-

of the action code 2 commands racognised by this extension,
then specific help information about that command should be
printaed to the default channel, and register C returned

If the string is not null, and the first werd 1s any

C as
zero, with a status code in register A (normally zero). TE
desired the rest o¢f the string can be 1nterpreted as
further parametars to control what information 1S
displayed. ’

If the string is not null and the first word is not
valid command for this extension then registars BC and D
should be returned unchanged.

ol g

9.2.4 DAction code 4 -~ EX0S variable

This action code results when a "read/write/toggle EXO0S
variable™ call was made with a wvariable number not=-
recognised by the internal ROM (see chapter 8). T allows
system extensions to implement additional EX0S variables
and may be particularly useful for extension ROMs

wnlich
also contain extension devices. The parametars passad are:
B= 0, 1 or 2 fcr READ, WRITE and TOGGLE (ones complement)
E = EXQS wvariable number
D=

Hew value to be written (only if B=l)

If the wvariable number 1is not reccgnised then the
extension should return with BC and DE preserved. If the
varliable number is one supported by this extansion than *=he

appropriate function should be performed and the following
parameters returned:

A = status (normally zero)

C = 0
D = New value of EX0QOS variable

ET10/12 Copyright (C) 1985 Intelligent Software Limlited



L™=
2
9.
BTN

=85 EX05 2.1 - Kernel Specification Page 33

To avoid conflict with the internal EX0OS variables, and
any obthers which may be added in future versions or

2xtansions, system extensions should only use EXOS variable
numbers of 128 and above.

2.5 Action code 5 -~ Explain error code

This actiocn code results from a user "explain error
code" functicn call {(code 28). The error ccde is passed
arcund all system extensions to give them a chance to
provide an explanation string. The internal ROM provides
2x¥xplanations for many of the error codes which can
generated by the EX0OS Kkernel or any of the buiit in
devices, unless a system extension returns a string first.

The error code is passed in register B and if it is not
ecognised the extension should just return with register
C preserved, To avold conflict with the built in error
5! , and any new ones in future versions or extensions,
s1on  ROMs should only use error codes below 7fh  for
s which they generats themselves.

£ kthe error code ig recognised then a peinter to an
ASCII explanation string (length byte first, maximum length

64 charactars) should be returned. This can be in any
segment and need not be paged in to the Z«30 memory space
when the extasnsion returns. The results returned are:

A - not reqguired, can be any value

3 = Segment number containing message

C =0

DE = Address of message string (can be in any Z-80 page)
2.6 Action code 6§ =~ TILoad module

The detalls of the Enterprise file mecdule format are
escriced in chaptar 10, This action code is passed around
vstem extensions when a module header of an unreceognised
/pe 15 read in by EXOS, before returning an error to the
=5 uch It allows a system extension to handle leoading of
2

own module types without requiring any special
mmands .

The extension is passed a pointer to the module header

(16 Dbytes) which will be in the system segment, and also
tne channel number to load from:

1]

B
DE

Channel number to load from
Pointer to 16 byte module header

2] CAanvricht+ (0 TG60RE Trn+ellimant S fktsmen T jm i & ~3




The

Lype

byte

{at DE+1)

EX0S 2.1 = Kernel Specification

should be examined to

this is a module type recognised by this extension.
should return with BC and DE preserved.

then
module

this is necessarvy.

9.2.7

e

type
should be

is
raad

Action code 7 -~

recognised then the rest
in from the
using other parameters from the header,
Register C should be
a status code In A which should be zero
successful and some errcor code 1f not,

of the

specified channel,

RAM allocation

Pagr: 3¢
see L1°
IZ norc
IF the
module

posslbly
and initialised
returned zero,
1f the loading was

=

and

This action code 1s rather special since it is only ever

called
extensions,

first

the
Howeve

entered with
allocated,

should simply ignore this action code, returning reagister
when future calls are made

at

L,

cold start time,
It will only be called once and will
call which the EX0S kernel makes
noted akove,
acticon

as

and 1s only recelived
to

having

the
it is possible for a RO
code 2 or 3 bhefore
so 1f the RCM expects to have RAM it must
for this case by looking for segment zero in Z-80 page-l.

by

Lo

any

the ROM does not reguirs any RAM allocaticn then

If
unchanged. In
this ROM, Z-80

this case,
page—-1 and register IY will bhe

since there is no RAM ar=a for them to point to.

t
undcefine

RCM

always be
RCM.

ne
Ra

test

5
L

oo Yt

If the ROM does reqguire RAM to be allocatasd then it
should return the following results:
C = Q0 (To indicate RAM is reguired)
B = RAM type flags. b0 - set for page-2 RAM
bl - set for page-1 RAM
b2..b7 - not used. zero.
DE = Number of byvtes reguirad
The ROM can be allocated one of two types of RAM.
Page—2 RAM 1is allocatad in the system segment and so the
extension can address it regardless of what it puzs in 72-390
page-~1l, The amount of page=2 RAM is limited since it must
all be in one segment and this segment is used for many

cother purposes.

RAM,

l6k.
availa
user.

segmen
the

ble,

<,

code of relocatable or absolute system extensicns

The other type of RAM allocation is page-l
This is allocated in a segment which the system marks
as a device allocated segment, and can be up to very nearly

If this type of allocation is used then mora RAS

is

but a whole segment will be taken away frocm the
Savaral

and the same segment can alsc be used for loading

extension

{see section 10.5:.

ERLOd .

Convricht

(CH

RAM areas can be put

18R% Intelligent Sof<wiras

-
L0

one -

into

T
Lnm

itad



N

o
o

0
!
fs}
LA

EXOS 2.1 - Kernel Speéification Page 40

i
-
o

type of RAM allocation raguirad is specified by a
of flags passed back in register B. If the page-2
(b1t-0) 1is set then the RAM will be allocated in the
m segment if possible. If the page-l flag (bit-1) is
fen a separate device segment will be used. If both

oV o o3 B A R
rta K
o

D e D
Yol

O - th 1 )

o
i
n oo rr
]
0 B
jod
3
=y
i
el
i}
1
D
o}
purs
j=n
{D
L]
E
e
]
)]
1}
wn
D
o)
o
H
Jof)
rr
{D
a,
¢
]
‘..!.
3
m
i
g
(]
o
r
%
H.
}_J
!_..I

=
D th

of the RAM area will be saved in the ROM extension
ong with the ROM number. Whenever the ROM 1s called
ure the RAM segment will be put in 2-80 page-1 and
r I¥ will point to the RAM area. If the page~]l flaaqa
0f reglster B) was clear, so the RAM was allocated
system segment, then register IY will point to the
in Z2-80 page~2. In all other cases IY will point
AM in 72-80 page-l, even if the RAM is actually

W

o]

0 orh
o 2 e S PR (VR
D M

A1 0 oo

i
1LY

—~ P e
D
it o

T Y
Bt i

00
-
3
Honomon

-

P in
em segment (both flags set). If "n" bytes of RAM

£
SYS T
uested then they can be accessed at addresses:

L (T ot ) e
"
s
b

£
W

(A S
v
[

I¥Y+0, IVv+l, e, Ivein=1)

Lf the RAM allocation failed because thera was not
enough RAM available then this extension ROM will be marked
as 1nvalid in the ROM list and will never be entereg again.

Nocta  that the call with this action code is made very
carly on in the systam initialisation, before device
drivers have been linked in or initialised. Some EXQ0S
calls are allowed but any of the device related calls (cpen
chnannel, 1link device and so on) are not. Generally care
shoula Dbe exercised with EX0OS calls made during RAM
ailocation. As mentioned before, a "scan extensions™ call
is allowed, and it will scan all ROM extensions, even those
wnich have not yet had RAM allocated. This is the only
case in which an extension ROM can be entered before having
its RAM allocated ~ care must be taken with this,

2.8 Action cede 83 -~ Initialisation

System extensions are initialised immediately after
cevices have been initialised. This is done initially at
coid reset time (for ROM extensions), and again whenever an
"EXO5 reset" call whith the appropriate flags set (seae

section 11.2) is made,. This occurs when a warm reset
happens and also when a new apolication program takes
control. RAM resident extensions are also ipitialised

immediately after they have been loaded. No paramaters are
vassed to the extensions and no results are returned.
Register C (the action code) should be praserved but all
other reglsters can be corrupted.



16=-Jan-~85 EX0S 2.1 - Kernel Specification Page 41

9.3

B A Py St rmy T oS T

Starting a New Applications Program

A system extension may decide to start itself up as the
current applications program as a result of a call with
action code 1 or 2. To do thig the following procedure
should be carried out. The only difference betweaen the two
action codes is the value of the raset flags used in

step
L. For action code 1 (cold start) a value of zero should
be used since the system is already in a reset state. For

action code 2 a value of 60h is used to ensure that any
devices, channel or allocated RAM remaining from the
previous application program are tidied up. The meaning of
these flags is explained in section 11.2

1. Do an "EXQS reset" call with the reset flags set  to
60h for action code 2, or 00h for action ccde 1 (as
explained abovel. This ensures that the system is in
a defined reset state with no user devices or user
RAM, and nc channels open. It will return with

interrupts disabled.

7. Set up a user stack somewhere 1in the ©page zero
segment, since no other RAM is available, and then ra-
enable interrupts,

3. Allocate any additional RAM segments which are needed,

and open any default channels.

4. Set up a warm reset address for when the reset
is prassed. This should be done even if the vrogram
does a complete restart for a warm reset, to en

that any RAM resident system extensions will remain
rasident.

5 Set up the default channel anumber to the program's
normal screen I/0 channel (usually an editor channel),

to allow system extensions to print their help
messages.
After doing this, it is in full control as the current

applications program and can make any EX0S calls.



EXOS 2.1 - Kernel Specification Page 42

Enterprise Flle Format and EXOS Loading Functions

.1  Enterprise File Format

All files which are to be loaded by EXC0S should follow
the format described here, It is designed so that the
operator o©f a program such as BASIC can simply give a
command such as "LOAD" without knowing what he is going to
road., It could be a BASIC internal format program, or it

could be a new device driver in relocatable format, to name
out two.

A file consits of a series of one or more modules. Fach
module starts with a 16 byhte module header which defines
wnat type of data is to follow in the rest of the module.

A  flle can contain several modules so that, for example a
BASIC program can Dbe lcaded at the same time as a new
device driver which the program uses, simply by having them
as twoe modules 1n a single file.

The header starts with a null byte (zero) to indicats
that 1t is an Enterprise module header, rather than for
example an ASCII text fllie. Any files which do not stars
will a null will be referred toc as ASCII files although
they may be any other sort of data.

Following the null is a type byte, which specifies what
2 of data the rest of the module contains. The next 13
es are different for each type and contain various other
ameters such as size and entry point addresses. The
very last byte of the header is a version number and should
always pe zero for current versions.

16.1.1 Module Header Types

The defined types of module are:

C - $SASCII ASCITI File

= Mot used

2 = BSREL User relccatable module

3 - S$5XBAS Multiple BASIC program

4 - S$3BAS Single BASIC pregram

S - S$SAPP New applications program
& - S$S5XABS Absolute system extension
7 - SSXREL Relocatable system extension
8 -~ S$SEDIT Editor document file

9 - S$8LISP Lisp memory image file
10 -~ §S$SEOF End of file module

11...31 -

Reserved for future use by IS/Enterprise

Type zero is recognised as an ASCII file to reduce the
possibility of an ASCII file being mistaken for
gnterprise module header. This will be
secticon 10.2.

an
explained in



l6-Jan-85 EX0S 2.1 - Kernel Specification Pag-

When a module has been loaded another meodule may follow,
so the system will attempt to load ancother header. It 13
therefore necessary to end each file with a module header
with the "end of file" type (type 10) to indicate thatz
there is no more to load.

Header types 3, 4, 8 and 9 are specific to particular
languages or devices and are descgribed in the documentation
for those programs (IS-BASIC, IS-LISP and the EX0S edit

ar).
They will not be menticned further here.

0Of the remaining types, numbers 5, 6, and 7 ara handled
entirely by the EXOS kernel. Type 2 i1s handled by the
EX0QS kernel but under the contrecl of the user, ALY of

these types will be described in the following sections.

10.2 Leoading Enterprise Format Files

When the user wants to load a file, he should ensure
that the channel to lcad from is open and then make a "load
module® EXCS call (cocde 29), This will read one byte from

the channel and lmmediately return a .ASCILI error, with

“he
character code in register B, if the byte is ncn-zero.

I£ the £first byte is zero then another byte (the <tyoe
byte is read). If this is zero then it is an ASCII file so
a .ASCII error is returned, with the type byte (zero) in
register B. This ensures that 1f an ASCIT file star<s with
a2 series of nulls then it will be recognised as an ASCrI

file and only the f£first null will be lost.

If the type Dbyte 1is non zero then it is saved and
another 14 bytes read in to complete the module header, IF
it is an end of file header (type 10) then a .NOMOD
will be returned. This should be trapped by the
program sSince it is not really an error, it

is the normal
terminating condition.

(type 5, 6 or 7) then the rest of the module will
in and initialised (details are given in the

1 N
sections}. If it is not a type handled by EX0S =) ks
module header will be passed around any system extansion
tc give them a chance to load it if they recognise <h
type. If the module is loaded in either of these ways then
a zero status code will be returned to the user.

Assuming that the module was not loaded by EXOS cr bv a
system extension then a .ITYPE error will be returned to

the user, and the module header copied into a buffer passed
by the user. The user can then look at the type byte and
" load the rest of the module if he recognises it.

ETi0n/12 Convriaght (¢) 19885 Intelligent Sofzwars Timited



15-7an-85 EXCS 2.1 - Kernel Specification Page 44

Wnen a medule has been loaded, by the user, by EX0S, or
by a system extension, another "load module” call should be
made to load in the next module of the file. This will
contlinue until a .NOMOD errcr is recelived from EX0OS, which
15 the normal terminaticn, or a fatal error occurs, either

ftrom the loading channel or an invalid module, which will
resullt 1N an errQr response.

1.3 Relccatable Data Format

EXOS supports the loading of relocatable modules using a
simple bilt stream relocatable data format, There are two
types of relocatable modules, user relocatable modules and
relocatable system extensions. These module types and how
they are lcaded are descriced in sections 10.4 and 10.5.
Thls section Just describes the relocatable bit stream
format itself.
The data cf a relocataple module is a bit stream in the
e that individual data fields are a variable number

sens of
pits and are not allgned ¢n byte boundaries. The bytes of
the data are Llnterpreted most significant bit first, so the
i 4

Lirsw

bit of the bit stream is hit-7 of the first byte.

A complete relocatable medule consists of a segquence of

itams which are defined by seguences of bits in the bit
streaam. The following diagram shows the deccoding of the
pit stream into the various items. The items themselves
ara explained afterwards.

0 -> 8-bits load absoclute byte

1 00 => l6-bits 1load relccatable word

. 01 0 0 => 2-bits set run time page

e restore run time page

S § -> lé=-bits set new location counter

. L0 -> end of wodule

.11 -> illegal - for future expansion

10.3.1 Location Counter and Run Time Page

Wnen the relocatable loader is called it is passed a

starting address which can be in any 2-80 page. It loads
the data inte whatever segment was in that page, and must
not cross a segment boundary,. It keeps a location counter
which 1s the current addresas it is storing bytes at and is
also used for loading relocatable words. This locatiocn
counter is initially set to the start address passed to the
loader.

I a "set new location counter™ item is found then the
foliowing 16 Dbits form an offset which is added to the
current locatlion counter, Adding this offset must not move
the location counter into a new page,



l6-Jan-85 EX05 2.1 - Kernel Specification

3
jof]
0
(i
.
()]

It is often useful to have sections cof code loaded into
a segment which will be accessed in different Z-80 pages,
since the segment can be paged into different pages. Tnis
igs particularly true when creating user device drivers
which may be lcaded into page-0, but whena executed will run

in page-=3. It is to provide this facility that the ‘'"sat
run  time page"” and "restore run time page" itams  ars
provided,

When a "set run time page" item is found, the following
two bits define a new page, The top two Dbits of the

location counter will be set to this new page Sete Litig.
This will not affect where bytes are actually loaded since
the page is irrelevant, as they are always loaded

LTS A
single segment. However 1t will affect the values produced
for relocatable words which are loaded. This means that
code can be loaded in one page to run in another.

The "rastore run time page" item will set the page of
the location c¢ountar back to what it was when the loader
was called, resgardless of any new pages which have bsen sat
since then.

10,3.2 Relocatable Words and Absolute Bytes

When a "lcad absoluts byte" item is found, the fallowing
8 bits are stored at the current location countar addrass
and the location counter incremented by onae. When a "load
ralocatable word" item is found, the following 16 bizs are
read and the current location counter added on to them.

The resulting word is stored low byvte first at the location
counter address and the location counter is

incrementad by
Twa.

10.3.3 End of Module Itenm

When an "end of module" item is found it will tarminate
the relcocatable loader. Any remaining bits in the lastc
byte will be padded ocut with zeros and the following byze
will be the start of the next module header.

10.4 User Relocatable Modules

User relocatable modules are locaded into user RaM  and
are regarded as being part of the current applications
program once loaded. It is the responsibility of the user
to organise allocation of RAM for them to be loaded int
They are useful for providing user device drivers, indeed

the 1interlace vwvidec driver which is provided witch the
Enterprise computer is loaded as a user relocatable module.

*PIN/T D Crmvricsht (03 1008 Treal? imant Saftgse s 7 e skl



15=-Jan=385 EX05 2.1 - Kernel Specification Page 46

The module header for a user relocatable module is:

0 = zero
1 - module type (2)
2..3 = Size of code once loaded
4..5 - Initialisation offset ({FFFFh if none)
9..L5 = =zero

Whan an EXQS "lcad module" function call finds a header

of this type, it will not recognise it but will just return
a LJITYPE error Lo the user. The user then locks at the
tyoe and se=s that it is a user relocatable module, The
size field in the headesr defines the complete size of the
mocule once 1t 1s loaded. The user must find an area of
RaM  oif this size, in one seament which he can allocate
pernanently, and pass thls address to a "load relocatable
module” EX0OS call (code 30), along with the channel number.

EXCS will load the module intc the RAM and then return
to the user with a zero status code if there was nc error.
If the initlialisation offszet is not QFFFFh then the user
shoula c¢all this address (the offset is from the ini+tial
Locading address). This routine will do any initialisation

tae meodule which {s regquired. For example in the case

-0 0 F
o R 0

the lnterlace video driver, the initialisation will link
into EXQOS as a user device.

13.5 Relccatable and Absolute Svstem Extensions

Relcocataple and absclute system extensions are loaded
automatically by EXCS when the appropriate module header 1is
found. Thaey are loaded into segments which EXQOS marks as
allocated to devices and will therefore never be freed.
Once loaded they functicen exactly like ROM basad system
extensions, with a single entry point which 1s passed
action codes. Cperation of the extensions once loaded was
described in a previous chapter, this section just covers
the actual lcading and header format.

{05 maintains a list of segments allocated in this way.
hey can Dbe used for loading releccatable and absolute
xtansions, and also for allocating RAM to RCM extensions

at cold start time. Absolute extensions always go at the
sbottom ©f a segment and so there can only be one per
segment. Relocatable extensions and RAM areas for ROM

extansicns are alloccated from the top of a segment

dewnwards and there can be as many of these in a segment as
will fitc,

The module header format for the two types is the

same
except L£or the type byte:
0 = =zero
1 -~ module type (6 for absclute, 7 for relocatable)
2..3 = Size of code once loaded (< 16k}
4..15 = zero



Py, S e o T el o PO R i =i I e

16-Jan-85 EXCs 2.1 -~ Kernel Specification Pag.: 47

EX0S will <first alleccate enough RAM to leoad the
extension into, which may reguire allocation of a new
segment or may be able to make use of a space in an earlier
segment. The data will then be lcocaded into -the segment,

In the case of an absolute extension the data will be
loaded with the first byte going at address 0C00ah, which
will be the entry point of the extension. For relocatable

extansicns the code will be loaded anywhere in the segment
(addressed in Z-80 page-3) and the entry point will be the
very £irst byte loaded.

If an error occurs in loading then the extansion will be
lost and the RAM for it will be de~allocatad which may
involve freeing a segment if it was a newly allocated one.
If no error cccurs then the new extension will be linkad on
to the start of the list of system extensicns and then
initialised, as described 1n the chapter on

svstanm
exteansions, Control will then return to the user in the
usual way.
10.6 New Applications Programs
The "new applications program” module type 1is loaded
autcmatically by EXCS when the header is found. It can be
used to load programs of up to 47.7%5k. The program it
loads will automatically be started up as the new
applications program, losing the previous one. It is

intended for lecading programs such as machine code games
from cassette although it will have other uses,

The module header format isg:

0 - zero

1 ~ module tvpe (5)
2..3 -~ ©Size of program in bytes {(low by*ta firs+)
4..15 - zero

EX0S will look at the size of the program and work out

if enough user RAM c¢an ke allocated tc load 12 into,
allowing for a sharad segment but without «closing any
channels. If there 1is nct enough then a .NORAM error is
returned, otherwise EX0S5 will commit itself to loading the
Elle.

Having reached this stage it will allocate the necsassary
usar RAM segments for the program and from this point on it
cannot return to the current applications program sincs it
will have corrupted the RAM it was using. If an error
occurs from here on then it will display an error message
on the default channel and then scan all extensions with
the <¢old start action code. This is the only time that
extensions can receive a ¢old start action cold other than
at a genuine cold start (see section 2.2).

AN AR Armtrriahe (Y 1088 Treall iamnt SaFroars Timicad



15-2an-85 EXOS 2.1 - Kernel Specification Page 48

Oncz the required segments have been allocated the new
program will be read in from the channel and stored

as
absaolute bytes starting at address 100h. When the whole
program has been lcaded, EX0OS will simulate a warm reset to
the start of the program at 100h. This warm reset will be
done with the reset flags set to 20h (see section 11.2)
which will completely reset the I/0 system, without
disturbing user RAM. The new applications program will

have to go through the normal startup procedure {(deseribed

in  sectlion 9.3), except that it needn't do another "EX0S
rzset” call,

Since user segments may have had to be allecatad to load
he program in, the program may be occupying a shared
gment. If this is the case then the user boundary will
ave beeaen set to just above the end of the program to allow
s much RAM as possible for opening channels etc.




16-Jan-85 s EX0S 2.1 ~ Kernel Specification Page 49

11. EXOS Function Calls in Detail

This chapter contains details of all the EXOS function
calls. Many of th:m have been described earlier in general

terms. This section concentrates on detalls such as
register usage and error codes, and describes the function
calls from the point of view of the program making the
call.

Parameters are passed to EXO0S calls in registers A, BC

and D&, and results ares passed back in the same registars.
Register A returns a status code which is Ze¥o Lf EHe @51l
was successful and a non-zero error code otherwise. AllL
other registers (HL, IX, I¥, AF', BC', DE', HL') are
preserved by all EXOS calls, and also the user's paging is
not disturbed. EX0S calls can be made from any addrass 1in

any %-80 page, and the user's stack can be in any or the
four pages.

11.1 Device Name and Filename String Syntax

The "open channel" and "create channel” function calls
take a string parameter. This string defines which device
driver the channel is being opened to, and also specifies a
unit number and filename. The syntax of the string is:

[ [device-name] [{"-"] unit-number] ":"] (file-name]
whera [1 denotas an optional part and "" delimits
literal characters.

The device name can be up to 28 characters and must be
entirely letters, which will be uppercased before using so
case i3 not significant. If it is not present then EXOS
will use a default device name which can be set with a
ndafault device name" EX0S call (ccde 19). If the unit
number 1is also absent (see belew) then the default unit
number, which can also be set with this call, will be used.

The unit-number, if present, c¢an be seperatad fr
device name with a single "=-" (minus) character if d
or it can immediately follow it. The unit number co
of a series of decimal digits which will be converta
a one byte value, by EXOS. If the device name ig

with ne unit number, then a default unit number 0f zaro
used.

The optional filename consits of up to 28 chara
which can include letters, digits and any of the
characters:

£$% & (Y~ /20N 7 _ (Also ASCII 60h)

Letters will be uppercased before the string is used. If

there is no filename then it will just be taken as the null
string.



Lh=Jan=-85 EX0OS 2.1 - Kernel Specification Page 50

The

the device driver for interpretation. However 1f the
device driver has the DD UNIT COUNT field in its device
descriptor set then some manipulation of the unit number

I
|
i
i
i
!
filename and unit pumber will be passed through to ?
i
|
!
i
1
will occur. |

T £

If the DD_UNIT_COQUNT field is set to "N" then this means
tnhat the device driver only accepts unit numbers in the

range (0 ... N-l]. If the unit number is greater than this
then 1t will be reduced by "N" and the search of the device
chain will continue, When ancther device of the same name

is  found the process will be rapeated and if it 1is now
within range then the device will be called with the
reducesd unit number. In this way several devices with the
same name can be supported, with the distincion being by
unit number, This 1s not used by any bullt in devicas but
could be used by add on disk units.

-
-
3]

Functicn O =~ System Reset

Parameters: C
Results: A
I

Reset type flags

= Status (always zero but flags not set
nterrupcs disabled

This call causes a reset of EXO0S. The flags passed in
register C control exactly what the RESET does, as below.

bt ... b3 must be zero

bd - Set => Forcibly de-allocate all channel RAM, and
ra=-initialise all devices, User devices
will be retained.

D5 = Set => As Dbit-4 but alsc re-link in all built in
and exXtension devices, and re-initialise
system exXtansions. User devices will be
lost. Device segments are not de—~allocated.

oHb -~ Set => De-allocate all user RAM segments.

b7 - Set => Ccld reset. This is equivalent to
switching the machine off and on again. All
RAM data is lost.

Nota that the status register 1s not set *o be

consistent with the status code (which is always zero
anyway! and registers BC', DE' and HL' are corrupted by

this EXO0S call. Also a side effect of the call is that
interrupts are disabled,.

An automatic RESET call with flags set to 10h is done by
EXCS when a warm reset occurs (see section 3.2). Also an
automatic RESET call with fillags set to 20h is done by EXO0S

when 1t enters a RAM loaded applications program

(see
section 10.6).

™M= " A= Y i it s o ir F e B T D T o dm e T L Fia JERCA i



- e RN

e Vit Al LT

l16-Jan-85 ‘ EXQS 2.1 - Kernel Specification

eI A2 CAmvriakt (0) 1225 Tntelligent Softwars Tom

le)
o8
(G
i
Ln
}_J

A RESET call (with flags set to 60h or CQh depending on
the action code) must be done by a system extension when i-

takes control as a new current applicaticons program ({see
section 9.3). ‘

After any reset call, including the implicit ones done
by EX0S as described above, the warm reset addrasss,
software interrupt address and hardware interrupt searvice
routine address will all have been set to zero by EXCS

and
will thus have to be re initialised by the user.
Function 1 - Open channel
Parameters: A channel number {(must not be 253
DE pointer to device/filename string
Results: A status
The format of the filename string was specifiasd above.
mhe filename and unit number are passed to the device

driver for interpretation and many devices will just ignors
them. If the device is cne which supports filenames then
it will return an error code if the file specified doess not
already exist, Some devices require options to be selectead
{by special function calls) befere the channel can be used.
Alsoc some devices reguire parameters to be speciiied by
setting EXQ0S variables before a channel can he opened.

The unit number is igneored by all built in devices
except the network driver, If a device name with no unit
number 1is specified then a default of zero is used which

devices could translate into theilr own intarnal default 1f
desired.

For the open channel function %o be successiully
completed, the device must allcoccate itself a channel buffer

hefore it returns and an error may be raturned if thera is
insufficient RAM available.

Function 2 ~ Create channel

Parametars: A channel number (must not be 253)
DE pcinter to device/filename string
Regults: 2 status

The create function is identical to the
except that if the device supports filenames,
will be <created if it doesn't exist, and an errcr code

returned 1f it doces. It is identical to CPEN CHANNEL for
2all built in devices except the cassette driver.

open function
then tnh

}=
i
iy

N

I R



in-Jdan-35 EXOS 2.1 - Kernel Specificaticn Page 52
11.5 Function 3 - Close channel
Parameters: A channel number (must not be 25%)
Resultsg: A status

The close function flushes any buffers and de-allocates
any RAM wused by the channel. Further reference to this
channel number will result in an error. The davice's entry
point is called before the channel RAM is de-allocated.

11.6 Function 4 -~ Destroy channel

Parameters: A  channel nunber (must not bs 255)
Results: A status

]

The destroy function is identical to the close

SO
-
c

= .
function
pt that on a file handling device the file is deleted.
5 identical for all built in devices.

{1

o
[

11.7 Function 5 - Read character

Parameters: A channel numbear
Results: A status
B character

The read character call allows single characters to he
read from a channel without the explicit use of a buffer.
IZ no character is ready then it waits until one is ready.
This call 1is passed directly through to the device driver.

11.8 TFunction & - Read block

Parametars: A  channel number
BC byte count
DE buffer address
Results: A+ status
BC bytes left to read
DE modified buffer address

The read block function reads a variable sized block
from a channel. The block may be from 0 to 65535 bytes in
Length and can cross segment boundaries. Note that the
byte count returned in BC is valid even if the status code
15 negative, although not if it is an error such as non-
existent channel. This allows a partially successful block
write to be re-tried from the first character which failed.
This call is passed directly through to the device driver.




TR B B ca o

16-Jan=-853 EXQS 2.1 -~ Kernel Specificaticn Page 53

11.9 PFunction 7 - Write character

Parameters: A channel number
B character
Results: A status

The write character function allows single characters to

be written to a channel. This call is passed directly to
the device driver.

11.10 Function 8§ - Write block

Parameters: A channel numhber
BC byte count

DE buffer address
Results: A status

BC bytes left to writa
DE modified buffer address

The block write function allcows a variable sized

block
ta be written to a channel and is similar to block read.
The byte ccunt returned in BC is valid even 1f the s+tatus

code is negative.

This call is passed directly thraough to
the device driver

11.11 fangtion 9 - Channel read status

Parametars: A channel number
Regults: A status
C

00h if character is ready to be resad
FFh 1f at end of file
O0lh otherwise.

The read channel status function call is used to allow
polling of a device such as the keyboard without making the
system wailt wuntil a character is ready.

Toes oo . s
passed directly through to the device driver.



WRITE FLAGS READ FLAGS
el et new polnter wvalue File pointer is valid
ol not used (0} File size is wvalid
02 Set new protection bytse Protection byte is valid
b3...b7 not used {0) always 0

Tais allows the file pointer and/or the protection byte
to be set independently, or 4ust to be read. Not aill
devices need to support this function, indeed ncone of the
built in devic=s support it. If a device doesn't support
it then 1t should return a .NOFN error code.

11.13 Function 11l - Special function
Parameters: A channel number
B  sub-functicn number
C unspecified parameter
DE unspecified parameter
Results: A status
C unspecified parameter
DE unspecified parameter

This function call allows device specific functions to
be performed on a channel. If it is not supported by a
device then a .ISPEC error will be returned.

The sub-function number specified in register B
determines which special function is reguired. Sub-
function numbers should be different feor all devices,
unless equivalent functlions are implemented. The special
functions for built in devices are (see device driver
speciiications for details):

FT10/00 Convrimht (Y 1085 Tnraellicent Saftwares T.imited

n-85 EXOS5 4.1 - Kernel Specification Page 5S4

2 runction 10 - Set and Read Channel Status

Parameters: A cnannel number

€ Write flags

DE polnter to parameter block (16 bytes)
Results: A status

& Read flags

This function 1s used to provide rancom access
facilities and file protection cn file devices such as disk
or a RAM driver. The format of the parameter block is:

bvtes: 0...3 = File pointer value (32 bits)
4...7 = File size (32 bits)
8 - Proteaction byte {yet to be defined)
9...15 - Zero. (reserved for future expansion)

he assignment of bits in the read and write flags bvte
s below. The specilied action is taken if the biz 1

4]




16-Jan-85 EX0S 2.1 - Kernel Specification Page 55

geprsp = 1 VIDEDO - Display page

GRS IZE = 2 VIDEC - Return page size and mode
@@ADDR = 3 VIDEC - Return video page addrass
@RAFONT = 4 VIDEQ =~ Reset character font
AE@FKEY = 8 KEYBCARD = Program function key
RRJOY = B KEYBOARD - Read joysick directly
QEPLSH = 16 NETWORK - Flush output bufier
GECLR = 17 NETWORK ~ Clear input and cutput buffers
B3MARG = 24 EDITOR - Set margins

BRCHLD = 25 EDITOR - Load a document

@RACHSV = 26 EDITOR - Save a documant

All cother sub-function codes from zZero to 63 are

reserved for use by IS/Enterprise. Codes of 84 and above
can be used by user devices.

11.14 Function 16 - Read, Write or Toggle EXOS Variable

Parametears: B =0 To read value
=1 To write value
= 2 To toggle value
C = EXO0S variable number (0...253)
D = New valus to be written {(only for write)
Results: A = Status
D =

New value of EXQOS wvariable

This function allows EXO0S variables to be

sat  oQr
inspected. These variables control various functions of
the system and specific devices., Note that the wvalue 1is
returned in D even for write and toggle. There is a list
of currently defined EXOS variables in chapter 8. System
extensions can implement addit:ional EX0S variables.
11.15 Punction 17 - Capture channel
Parameters: A - Main channel number
C = Secondary channel number (CFFh to
cancel capture)
Results: A - Status

The capture channel function causes

subsequent read
function calls {read character, read block and read stTatus)
to the main c¢hannel, *to read data instead £fLrom the
secondary channel, When the function call is made, the
main c¢hannel must exist but no check 1s made on the

secondary channel number existing.

Lnta LB B T B [ PR S S S 2 T U T4 Bt I e U N B



1s-Jan-385 EX0S 2.1 - V¥ :/nel Specification Page 56

The capture applies to all subseguent input from the
maln channel number until either the secondary channel 1isa
closed or gives any error (such as end of file) or the main
channel is captured from somewhere else. The effect of the
capture can be cancelled by giving a secondary channel
nunber of O0FFh which is not a valid channel number.

L.16 TFunction 18 - Re-direct channel

Parametars: A - Maln channel number
C - Secondary channel number (0FFh Lo
cancel redirection)
Resuluos: A - Status

The re-diract functicn causes subseguent output sent to
hWe main channel with write character or write block
.

Gnchlon callis, to be sent to the secondary channel
instaad. The redirection lasts until the secondary channel
is closed or resturns an error, or the main channel is
redirectaed somewhere else. A secondary channel number of
0FFh will cancel any redirectlion of the main channel.

17 Function 19 = Set default device name
Parameters: DE - device name pointer {(no colon)
C - device type 0 = non f£ile handling
1 = f£file handling
Results: A - status

The set default device name function specifies a device
name  and {(opticnrally) a unit number which will be used 1in
subsegquent "open channel" or "create channel”™ function
calls 1if no device name 1is specified by the user.
Initizally the default name will he "TAPE-1" but will be set
to  "DISX-1" if a disk device 1is linked in. The specified
device name and unit number are checked for legality (le.

no invalid characters) but not for existence in the device
chain. -

if a string with only a unit number, such as "457 is
specified then this will set a new unit number but the
defauit name will be un-changed. If device name but no
unit number is given, then the default unit number will be

set to zZero.

The "“device type" given in register C 1s simply c¢opied
to the "device type" EX0S variable. This will be zero in
the default machine because the default device is "TAPE"
which 13 not a f£ile handling device, If a disk unit 1is
connected then the device type will be set to 1. This
variable 13 not currently used by EX0S but can be of some
use to applications programs.




16-Jan-85 BX0S 2.1 - Kernel Specification

g

ae)
i
[Ve]
(L
Ut

11.18 Function 20 - Return system status

Parameters: DE -> Parameter block, 8 bytes.
Results: A = Status code, always O.
B —

Version number (gurrently 20Ch)
DE -~ unchanged

This function returns the version number of the system
and various parameters which describe the RAM segment

usage in the system, The parameters returned are, in
order:

0. Shared segment number (0 1f no shared segment)
. MNumber of free segments.
. Number of segments allocated to user, excluding page-
zero secment and shared segment (if there is one).
Number of segments allocated to devices,
Number of segments allocated to the system,
the shared segment (1f thers ig ocne).
Total number of working RAM segments.
Total number of non-working RAM segments.
**%* Not currently used **=

oS N

£ Led
»

including

~] 3 n
¢ »

11.19 Punction 21 - Link Device

S e

ra

Parameters: DE - Pointear to RaM in 2-80
containing device descriptor.

BC ~ Amount of deviece RAM reqguirad.
Results: A - status

space

The link device function causes the device descriptor
pointed to by DE to be linked into the descriptor chain.
The descriptor will be put at the start of the chain and
any existing device with the same name will be disabled.
DE must point at the TYPE field of the descriptor and the
descriptor must not cross a segment boundary. Once linked
in the user must ensure that the device code and descriptor
are not corrupted until a RESET functicon call with bit-5
set (to un-=link user devices) has been made,

The amount of R2AM reguested will be allocated in the
system segment. When the device is first initialised, this
RAM area will be pointed to by IX and the device must
remember this address since it will never be told it again,
even when it is re-initialised.



Lo m et a0 BiUs £.L ~ kernel speclrigcatlon Page 58
1..20 Function 22 -~ Read EX0OS Boundary
Paramet~=rs: none
Results: A - status {(Always zero)
C - Shared segment number, 0 if there
15 no shared segment.
DE - EXOS ©boundary in shared segment
(0..3FFFh)
The read EXO0S5 boundary function returns the offset
within the currently shared segment, of the lowest byte
which the system is using. If there is no shared segment
tnen DE will point to where the EXCS5 boundary would be if a
shared segment were allocated.
11.2. Function 23 -~ Set User Boundary
Parameters: DE —- Offset of new USER boundar-y.
(s DB B
Results: A =~ Status
Thae set user boundary function allows the user Lo move
the USER boundary within the currently shared segment. IE
thera 1s no shared segment then this function 1is not
allowed. The bpoundary may not be set higher than the
currant EXOS boundary.
11.22 Function 24 - Allccate Segment
Parameters: nene
Results: A - status
C = Segment number

DE - EXOS beoundary within segment

The allocate segment function allows the user to obtain
another 16X segment for his use. If a free segment 1is
availaole then it will be allccated and status returned
zero with segment number in C and DE will be 4000h.

If there are no fre= segments but the user can be
Llocated a shared segment, then the segment number will be
eturned in C and DE will be the initial EXCS boundary. In
nis case a LS3HARE error will he returned. The user

poundary is initially set equal to the EX0S boundary.

ffﬁﬂl

I therse are no free segments and there is already a
shared segment then a .NOSEG error will be returned.

If this function call is made by a device driver then

he seagment will ba marked as allocated to a device and a
shared segment cannot be allocated.

+
|

ET10/12 Copyvright {C) 1985 Intelligent Software Limited




l6~Jan=-85 EX0S 2.1 - Kernel Specification

11.23 Function 25 - Free segment

Parameters: C - Segment number
Results: A - status

The frea segment function allows the user to free a L6k
segqment of RAM. The segment must be currently allocated to
the user or be shared. The page zero segment cannot be

freed as it was never allocated explicitly with an
*allocate segment” call.

Tf this function call is made by a device driver
must be to free a segment which was allocated to a
driver with an "allocate segment” call. Thers i
checking of which device is freeing the segment - de
are supposed to be well behaved.

then it
cevice

11.24 Function 26 - Scan System Extensions

Parametars: DE
Results: A

Pointer to command string
Status

i

This function causes the string to be passed around all
system extensions after some processing, with action code 2
(or 3 1if the first word of the string is "EELP"). This
allows services to be carried out by system extensiocons and
also allows transfer to a new applications program.

11.25 PFanction 27 - Allocate Channel Buffer

Parameters: DE -~ Aamount of buffer which must be in
one segment
BC - Amount of buffer which needn't be
in one segment (only needed for
video devices)

Regults: A - status
IX -> Points newly allocated bufifer
PAGE-1 contains the new buffer ssgment

The allacate channel buffer function is

provided conly
for devices and may not be called by the

applicaticns

program. It is used to provide a channel with a RaM buffer
when it 1s opened. The "multi segment size" passed in
register BC 1is ignored for non-video devices since they
must have their channel buffer all in one segment. So for
non-video devices BC need not be loaded before making =zhe
call.

ET10/12 Copyright (C) 1985 Intelligent Softwara Limited



16-Jan-135 EX0OS 2.1 - Kernel Specification Page 60
1i.26 Functicon 28 - Explain Error Code
Parameters: A ~ Error code which needs explaining
DE - Polnter to string buffer (64 bytes)
Results: A= 9

o]
-

3]

DE - Unchanged

This function allows an EX0QS error code to be converted
LEED

bt = a short text message. System extensions are given a
cnance of doilng the translation. All error codes generated
oy the BEXOS kernel and the built in devices are explained
oy he internal ROM. If the string returned is of zero
length then it is an error code which no one was willing to
expLaln.
7 Function 29 - Leoad Module
Parametars: DE => Buffer for module header (16 bytes
A = Channel number te load from
Results: A - 3Status

DE = Unchanged

B - If A=.ASCII - lst character of file
If A=.ITYPE ~ Module type
Else un—-defined

This function call was explained in the section on

lcading Enterprise module format files. It will load a
module header and then either load the module itself, or
pass 1t  to the system extensions for loading. If the

system extensions don't want it then it will be returned to
the user in his buffer {(pointed to by DE), for him to load.

If a module is loaded OK by EX0OS or a system exXtension
then a zero status code is returned. In this case, or 1f
the module is successfully leoaded by the user, the “load
module" function ¢all should be repeated to load the next
module. This should continue until a .NOMOD error 1is
returned which indicates that an "end if file header” was
raad, or until a fatal error occgurs.

If the first byte 1s not zero, or the type byte is zero
then the file is not an Enterprise format file and a .ASCII
error is returned with the first character in B. The user
can then do what he wants with the ASCII data, but should
not attempt to load another module from this file.

p—



e Sl EX0OS 2.1 - Kernel Specifiication Page 62

11.32 Function 34 - Read Date
rarameters: none
Results: A = Status
C = Year 0...99 (BCD)
D = ronth 1...12 (BCD)
E = Day L...31 (BCD)

This function reads the current value of the internal
svstem calender. This c¢an be set by the user and will
increment automatically when the system clock i eaches
midnight, «<¢oping correctly with the number of days in each
month including leap years.

+++++4++i+ EWD OF DOCUMENT 44444444+

ETLO/A2 Copyright (C) 1985 Intelligent Software Limited




16~-Jan-85 EXCS 2.1 - Kernel Specification Pa

i
(vl
(9]
=

11.28 PFunction 30 - Load Relocatable Module

Parameters: A = Channel number to load from
DE = Starting address tc load at
Results: A = Status
DE = Unchanged

This function call can be used by the user to load
user relocatable modules, with header type 2, which will ke
rejected by the "load module" call above.

The user must find the correct sized chunk of RAM to
load the module into (from the size in the header). If the

function call returns a zero error code then the

user
should call the 1initialisation entry point of the code
loaded (if there is one) and should then call "load module"

agaln to get the next module header. This is

explained in
more detail in an section 10.2.

11.29 Punetion 31 - Set Time

Parametars: C = Hours 0...23 (RBRCD)
D = Minutes J...59 (BCD)
E = Zeconds $...59 (BCD)
Results: A = Status
Thig function sets the internal system clock The
parameters are checked for legality and a .ITIME error
raturned 1f£ they are illegal.
11.30 Function 32 - Read Time
Darrameters: none
Raesults A = Status
C = Hours 0...23 (BCD)
D = Minutes 0...59 (BCD)
E = Seconds 0...59 (RBRCD)
This function reads the current value of the systam

clock. This clock 1s incremented every second, using the
Enterprise's lHz interrupt, When it reaches midnight the
date will automatically be incremented (see helow).

11.31 PFunction 33 - Set Date

Parameters: C = Year 0...99 (BCD)
D = Month 1...12 (BrCD)
E = Day 1...31 (BCO
Raegultg: A = Status
This functicn sets the internal system date. The

parameters are checked fully for legality,
number of days in each month and leap years. The year is
origined at 19280 sc a year value of 4 actually represents

12984, This allows the date to go well into the
{(obsolescence bullt out !).

including the
future

ET10/12 Copyright (C) 1985 Intelligent Software Limi

ited



16-Jan-385 EX0S 2.1 - Kernel Specification Page 62

11.32 Function 34 - Read Date

Parameters: none

Results: A = Status
C = Year 0...99 (BCD)
D = Month 1...12 (BCD)
E = Day 1...31 (BCD)

This function reads the current value of the internal
system calender. This can be set by the user and will
increment automatically when the system <clock 'reaches
midnight, coping correctly with the number of days in each

month including leap years.

++++++++++ END OF DOCUMENT ++++++++++

ET10/12 Copyright (C) 1985 Intelligent Softwars Limited



	ET10-12_EXOS_21_Kernel_Specification~01
	ET10-12_EXOS_21_Kernel_Specification~02
	ET10-12_EXOS_21_Kernel_Specification~03
	ET10-12_EXOS_21_Kernel_Specification~04
	ET10-12_EXOS_21_Kernel_Specification~05
	ET10-12_EXOS_21_Kernel_Specification~06
	ET10-12_EXOS_21_Kernel_Specification~07
	ET10-12_EXOS_21_Kernel_Specification~08
	ET10-12_EXOS_21_Kernel_Specification~09
	ET10-12_EXOS_21_Kernel_Specification~10
	ET10-12_EXOS_21_Kernel_Specification~11
	ET10-12_EXOS_21_Kernel_Specification~12
	ET10-12_EXOS_21_Kernel_Specification~13
	ET10-12_EXOS_21_Kernel_Specification~14
	ET10-12_EXOS_21_Kernel_Specification~15
	ET10-12_EXOS_21_Kernel_Specification~16
	ET10-12_EXOS_21_Kernel_Specification~17
	ET10-12_EXOS_21_Kernel_Specification~18
	ET10-12_EXOS_21_Kernel_Specification~19
	ET10-12_EXOS_21_Kernel_Specification~20
	ET10-12_EXOS_21_Kernel_Specification~21
	ET10-12_EXOS_21_Kernel_Specification~22
	ET10-12_EXOS_21_Kernel_Specification~23
	ET10-12_EXOS_21_Kernel_Specification~24
	ET10-12_EXOS_21_Kernel_Specification~25
	ET10-12_EXOS_21_Kernel_Specification~26
	ET10-12_EXOS_21_Kernel_Specification~27
	ET10-12_EXOS_21_Kernel_Specification~28
	ET10-12_EXOS_21_Kernel_Specification~29
	ET10-12_EXOS_21_Kernel_Specification~30
	ET10-12_EXOS_21_Kernel_Specification~31
	ET10-12_EXOS_21_Kernel_Specification~32
	ET10-12_EXOS_21_Kernel_Specification~33
	ET10-12_EXOS_21_Kernel_Specification~34
	ET10-12_EXOS_21_Kernel_Specification~35
	ET10-12_EXOS_21_Kernel_Specification~36
	ET10-12_EXOS_21_Kernel_Specification~37
	ET10-12_EXOS_21_Kernel_Specification~38
	ET10-12_EXOS_21_Kernel_Specification~39
	ET10-12_EXOS_21_Kernel_Specification~40
	ET10-12_EXOS_21_Kernel_Specification~41
	ET10-12_EXOS_21_Kernel_Specification~42
	ET10-12_EXOS_21_Kernel_Specification~43
	ET10-12_EXOS_21_Kernel_Specification~44
	ET10-12_EXOS_21_Kernel_Specification~45
	ET10-12_EXOS_21_Kernel_Specification~46
	ET10-12_EXOS_21_Kernel_Specification~47
	ET10-12_EXOS_21_Kernel_Specification~48
	ET10-12_EXOS_21_Kernel_Specification~49
	ET10-12_EXOS_21_Kernel_Specification~50
	ET10-12_EXOS_21_Kernel_Specification~51
	ET10-12_EXOS_21_Kernel_Specification~52
	ET10-12_EXOS_21_Kernel_Specification~53
	ET10-12_EXOS_21_Kernel_Specification~54
	ET10-12_EXOS_21_Kernel_Specification~55
	ET10-12_EXOS_21_Kernel_Specification~56
	ET10-12_EXOS_21_Kernel_Specification~57
	ET10-12_EXOS_21_Kernel_Specification~58
	ET10-12_EXOS_21_Kernel_Specification~59
	ET10-12_EXOS_21_Kernel_Specification~60
	ET10-12_EXOS_21_Kernel_Specification~61
	ET10-12_EXOS_21_Kernel_Specification~62

