B --—dP

) S

L a2 €.8 L. & .o

d_.2

L. 9 b s

.4 (-4 t_J4

>

b -

29-Nov-84 EXOS 2.0 - Kernel Specification Page 1

1.

INTRODUCTION
EXOS is the extendable operating system for the
ENTERPR ISE micro-computer, It provides an 1interface
" between an applications program (such as th2 IS-BASIC
interpreter) and the hardware of the machine. The mailn
features of EXOS are a channel based input/output system
and sophisticated memory management facilities. The 1/0

system allow device independent communication with a range
of built in devices and also any additional devica drivers
orovided by the user. '

The built 1in devices included with the EX0OS kernzl 1n
the ENTERPRISE ROM, are:

l. Vid=2o driver providing text and grapmnics handling.

2. Keyboard handler providihg joystick, autorepeat and
programmable [unction keys.

3. Screen editor with word processing capabilities.
4. Comprehensive four source stereo sound generator.

S. Cassette tape file handler.

6. Centronics compatible parallel 1intertace.
7. RS232 type serial interface.

8. Intelligent Net three wire network 1interface.

This document describes the EXOS karnel, which
interfaces betwean an applications program and the various
devices, providing memory management and wvarious other
facilitlies. It explains the action of the kernel from the
opoint of view of both devices and applications programs.
The built 1n device drivers themselves are each describad
in separate documents, some of which make reference to th=
kernel specification.

It is 1intended that, along with the wvarious d=avice

driver specifications, this documant will orovida
sufficient information for writing applications programs
using EXO0S, or for writing new EXOS device drivers. All

details in this document apoly to EXOS version 2.0.

ADQUIPNENT BV
INDUSTRIEWEQ 10412

FOCSTCUS 2ty
3340 A Vo= IDEN
TCL Goa3u-1002

o T

ET10/10 Copyright (C) 1984 Intelligent Software Limited

U"

29-Nov-84 EXOS 2.0 - Kernel Specification Page 2

2. OVERVIEW OF THE EXOS ENVIRONMENT %

When EXOS is running, there 1is always a "current 7 ¢
applications program” which has overall control of the *
machine. This program can call EXOS to make use of any of
its facilitie:, such as channel 1/0 or memory allocation.
In the standard machine the current applications program
will bz either the built in word processor (WP) program Or
the IS-BASIC interoreter caricridge, althouah it could be
any other cartridga ROM or cassette loaded program 1in RAM.

Throughout this document the term "user" is wused to
r2fer to th2 current applications program, since this
orogram 1s using EXOS. |

2.1 The EXOS Input/Output system

As mentioned b=fore, the EXOS I/0 .ystem 1s provided as
a set o0f device drivers. A device driver 1s a plece of
code containing all the necessary routines to control the
device it 1s serving, and orovide a standard interface to
EXOS. A device driver might not in fact control a physical
d2vice but may provide deavice-like <tfacilities such as
reading and writing characters, purely 1n sottware.

-y

When EXOS ctarts up it lccates all the built i1in device
drivers and makes an internal list of them. The list also
includes device drivers contained i1n any expansion ROMs
which are plugged 1in. The user can link 1in additional
devices (known as user devices) which are added to the
list. Each device in the list 1s 1dentified by a device
name such as "VIDEO", "NET" or "KEYBOARD".

The I/0 system is channel based, which means that 1in
order to communicat=2 with a device, a channel must first be
co=2ned. A channel 15 opened by giving the device name and
a one byte channz2l numb=2r .o EXOS. This =stablishes a
communications opath to the devicz2 along which characters
can b2 trans.2rrzd in 21th2r direction, either singly or 1n
arbitrarily-sized blocks, and special commands given to the
d2vice, simply by soecitying thz channel numb=r.

For a file based device (such as cassette tape or disk)
a channel would be open2d to do a single file transfer and
-h2an closed again. For non-file deviczs (such as the
keyooard) a chann=21 would probably ba on2ned and then
raomain open tor all tuture accesz2s.

EXOS allows many chann2lz te b~ eon2n2d simultaneously to
a £1ngle? devic2, altnough .cm~ «>vicy. thoms=lv2= will not
allow this, For example the vidro drivar allows any number
of channz2l<c ooen to it but the keyboard driver allows only
one., Chann21ls remain open until they ar~ ~xnlici1 ly closed
by th2 user,

|

| -

N

N

-

f..

.

\

)
?

-

29-Nov-84 | EXOS 2.0 - Kernel Specification Page 3

When a channel 1s opened, EXOS takes. care of allocating
any RAM which the device might need for buffers or
variables.

2.2 Memory Allocation

In order to understand the memory allocation facilities
or EXOS it 1is rirut nacessary to understand the hardware
memory organisation on the Enterprise. -

2.2.1 Memory Segments and Pages

The Enterprise uses a segmented memory scheme in order
to extend che addressing capabilicy or the Z2-80 from 64
kilobytes to 4 megabytes. The segmenting sScheme 1s based
on l6x segments:. -

The 2-80 address space is dividad uo 1inwo iour 16k
"pages®, numberz2d rrom zecto to chrze. The addressas rLor
thase f[our pagas are: |

Pagz2-0 JU0O0h - 3FFFn

Paga-1l 4Jd00h - 7FFFh

Page-2 800uh - BFFFh

Page-3 C000n - FFFFh
The 41 megabyte address space 1s divided up 1ntc 256
"segments", 2acn segm=2at being 1l6xk. Every 16Kk section ot
melory 10 the system thus has 1ts own "segment number" 1n
the> rance [UQuh - FFh]. The segmznce numbers roc certailn

-2Ctlons ot memory are permanently defined:

Intarnal 32x R0 - S2gments 00h and 0OLn

bsK Cartriaa: cloc - Segmants Oa4nh to 07n

laternal 64K RAM - S2gments FCa co 200

2nd 1inkt2rnal 64K RAM - Segments Foh to FBn
Assoclated with each of the four Z-80 pages there 1s an
8-bit "page register" on a Z-80 1/0 porc. The contents of
these regiscters define which orf the 256 possible segments
are to be addressed in each orf the Z-30 pages. Thus any

segment can be addressed in any of the Z-80 pages simply by
putting 1ts segment number into the appropriate page
register. One segment can be simultaneously addressed in

tWOo Oor mcore pages 1f desired by puttling the same value into
several or the paging registers.

ET10/10 Copyright (C) 1984 Intelligent Software Limlted

e
' [
i

29-Nov-84 EXOS 2.0 - Kernel Specification Page 4 *

4
b

The four internal RAM segments (segment numbers FCh to
FFh) are the only ones which the NICK chip can address for
generating video displays. For this reason they are
referred to as the video RAM, They are also slower to
access than all other memory since any Z-¢0 accesses toO
them are subject to clock stretching to sychronise with the

- NICK chilp accesses.

N

2.2.2 User Segment Allocation

When EXOS =starts up 1t locates and tests any RAM
segments which are available and builds up a iist ot them.
When it passes control to the user, 1t will do so by
outting the appropriate szgment (usually a ROM segment)
into 2Z-80 page-3 and jumping to 1t, At this stage the
contents of pages 1 and 2 will bz undefined, but page=0
will contain a RAM segment, kKnown as the "page zero *
segment”.

',.....

The first 256 bytes of the page ze2ro segment contaln
certain system entry points and system code, and also

certain areas which are reserved for CP/M emulation. The
rest ot the page zero segment is not used by the system and
1s completely 1free for use by the user,. Because of the

system entry points, which include an interrupt entry
point, the page zero segment should always be kept in Z-80
page-0.

If the wuser reguires more RAM cthen it can ask tor
additional segments trom EXOS. It will be allocated other

RAM segments from the list unlmss th2c2 are none lett. It
can also free a segm=2nt which it 2a: o:n allocatzd when 1t
does not need it any more. Tnos> additional s2gments will
not b2 explicitely paged in by EXOS, 1t 1&g uo to 'he user
to page them in (usually into page: 1 and 2) wn=n st neeas
them.,

1< is possible for th2 u»2t tc o2 alticca.~d ~ "shared
segment”. This 1s a =z2gm2nt oi which th2 uzs2r 1 only
allowed to use part, the re:zt b2ing used by EXOS. This
will b2 eoxplained 1n mor2 detail la:i~or

2.2.3 EXOS RAM usage and Channel RAM

Segment number OFFh; which 15 one of th2 wvideo RAM
segments, 1s always useda by EXOS ana 15 thererore known as
the "System segment". The details of what this segment 1s
used for will be given later but it includes RAM areas for
system variables, system stack, built in d=vice driver
variables, 1line parameter table, 1lists of RAM and ROM
segments, the list of available aevices and RAM allocation

for extension ROMs. Th2se RAM areas start at the top of
the segment and use as tar down as necessary.

--—l"-"

|

A.. o

h. o

2.3

\,
)
o

|

A <@ L S | A .o

Lo

A .«

\ -4

{ -9

29-Nov-84 EX0OS 2.0 - Kernel Specification Page 5

Below this system RAM allocation 1s the channel RAM
area. This contains an area of RAM for every channel which
is currently open. The size of each RAM area is determlned
by the device when the channel is opened and may be any
size from just a few bytes up to several kilobytes. These
channel RAM areas always start in the system segment Dbut
can occupy any number of other segments. The RAM for any
given channel is de-allocated when the channel 1s closed so
this memory allocation 1s not permanent.

System Extensions (ROM and RAM)

When EXOS starts up, as well as making a list of all
available RAM, it also looks for any extension ROMs which
are plugged 1in and builds up a list of these. Each of
these ROMs may contain EXOS device drivers which will be
linked 1into the system just like built in devices. Each

ROM also contains an entry point which is used for several

purposes.

Each ROM will be given a chance to become the current
applications ROM at startup time. If no ROM takes up this
opportunity then the 1nternal word processor will take
control.

At certain times an "extension scan" will be done which

gives each ROM 1in the list a chance to carry out some
service. This allows ROMs to provide additional error

messages, help messages and various other system functions.
An extension scan can be 1nitiated by the user program
which will pass a command string to each ROM in turn. This
allows an extension ROM to provide some service Or carry
out a command and then return to the main applications ROM.
This facility can also be used to start up another ROM as
the current applications program.

There 1is a facility in EXOS for the system to load

‘programs 1nto system RAM (ie. RAM which is not allocatcd to

the user) and link these 1nto the list of ROMs. Thoes all
the facilities which are available to extansion ROMs are
also avalluble to code loaded 1nto RAM, Tiooe RAM
eXxtansiuns can b2 loaded elther 1nto a complete lox szguant
cach, or 1f they are supplied 1n a relocatable cforuwat,
several of them can be put 1nto one segment thus reduclng
the amount of RAM which 1s used up 1n this way.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

2

29-Nov-84 EXOS 2.0 - Kernel Specification Page 6 .

3. SYSTEM INITIALISATION and WARM RESET

3.1 Cold Reset Sequence

- A cold reset is done when the machine is rirst powered
on, and when th2 RESET button 1: przssed, unless the user
has set up a "warm reset address" (s2e below). It
completely restart: the system, 1losing any information
which exi1sted betore the reset. |

A cold reset firct does a checksum test of tha internal
32k ROM, If thi1s 1s passed 1t then locatzs any RAM 1in the

™ 3

system, It searches: Lhe whole <{-megabvie address sSpace
anart tfrom ths internal ROM and cartriog2 slot (s=2gments 00
to 37, I+ examines each 16K segmenc in turn, doing a
memory tost on 2ach ona2. li a r»>cm2nT pasi2s the memory
25t then it will b» add=d teo i1~ 1.t or avallable RAM
segm2nts. There 135 no Lesc Jovr RAM re.i=2ction:. SO0 any
cxtension RAM must Dbe decoded tully. The momory test

dastroys any data which may hav2 b?2n 1n th» RAM <c~gment
previously.

After th2 RAM test, the 4-megabyte memory space 1s then
s2archad for extension ROMs3. The ROM :zzarch will only find
ROM= 1in segment numbers which are multinles or i6. This
merans chat 2xtension ROMs hav: to be decod=2d only to 256K
boundaries, but can reflect thrcuahout this 256K =pace. An
cvcrption 1s made ftor the carcridag:2 =lot in that all four
s2agments are examined for ROM, but a test 1s donz to ignore
roflactions bv checking that any two ROMs in thz cartridge
slot are ditfferent. The details or extension ROMs are
~xplalned later. ; | R

Having created the ROM list, wvarious internal variables
ar> et up, including ths <ystemm 2ntry points at the scart
of the page zero segment. The remainder ot the I/0 system
is then initialised by linking in and initialising all the
built in and extension devices and 1initialising all
extension ROMs as will bz explainea in more detail later
on. The copyright display program is than entered which
displays a rlashing "ENTERPRISE" m=2::zage and an Inta2lligent
Software copyright message on the screen, until a key 1s
oressed by the user. This disolay and waiting or a Key
can be suppressed by an extznsion ROM setting th2 variable
CRDISP FLAG to a non-zero value whan it 1s initialised (see

below for ROM initialisation).

When a key is pressed, +the display will be removed and
the system wiil call each extansion ROM in turn with action
code 1 (see later for explanation of action codes). Any
ROM which wants to set 1tselt wup as the current
applications program simply dozs an "EXOS reszet" call (see
later) to claim ths system and then has full control.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

h.. &

-

Lﬁ-—-ﬂi

A

. &

. ¢ L. L.s (L.a

-

i . 4

A —

b-a b M. o

29-Nov-84 EXOS 2.0 - Kernel Specification Page 7

3.2

ET10/10

Warm Reset Sequence

A warm reset is performed when the RESET button on the

machine is pressed, 1f the user has set up a warm reset
address, and if the system variable area has not been
corrupted. A warm reset address can b2 set up Smely by

storing the address 1in the variable RST ADDR which is in a

defined place in the system segment., The addresg stored
must be in 2-80 page=-0 and will be jumped to when the warm

reset sequence 15 complete. The warm reset routine will
thus always be in RAM since the page zero segmentc 1s RAM,

A warm reset does not do a RAM test or a ROM search.
All memory allocated to the us2r 1s undisturbed and any
system RAM extensions or user devices which are linked 1in,

remain. However all channels are rorcibly closed and all
devices are re-initialised, any RAM which was allocated tcC
chann2l RAM ar=za: 13 ireed. Th2 details or this will Dbe

explained 1later on (in tact an "EXOS reset" «call 1s
simulatad with the reset flags set to 1l0h - see later).

EXOS will set RST ADDR back to zero before jumping to

the warm ra2:=et address. Thnis ensures that 1f the system
has crashed then a second pra2ss or the reset button will do
a cold resec. Also, as long as thz user waits ror a short

time before setting 1its warm reset address up again,
oressing the reset button twice gquickly will always do a
cold reset.

The code at the warm reset entry polint will be entered
exactly as if it had just done an "EXOS reset" call so 1t
will have to set up 1ts stack pointer and re-enable

lnterrupts (see section on the "EXOS res2t"™ call). The
contents of Z-80 pages 1, 2 and 3 will be un-defined so the
user must reset these {or nimselt. Particularly, 1n the

case of a ROM applications program which normally runs with
its ROM in page-3, 1t will have to page 1ts own ROM Dback

in. This means oi course that the applications program

must have stored 1ts segm2nt number in the page zero
segment in order ftor the warm reset routine to restore 1t.
Also note that any sortware interruot address (described

later) which may have been set uo will have been lost, anc

sOo thlis must be set up again.

Copyright (C) 1984 Intelligent Sortware Limited

29-Nov-384 EXOS 2.0 - Kernel Specification Page 8

4. APPLICATIONS PROGRAM INTERFACE

The first 256 bytes of the page =zoro s=eamant, which
always resides in Z-80 pag=e-0, ar=2 laid out a=z (2ollows.
R it Rttt ettt TE P Bt
00h | Reserved for CP/M ~mulation |
B s ettt Rttt bttt bt LTl
08 h | Free |
e e A ke
10h . Free |
D e T A s
18h | Fre= |
s St Sttt ettt Rt St 2
20n | Free .]
- ks e e D e e
28h | Free |
R e T R it et R S
30h | EXOS system call entry vector |
N e e s Rt ettt Rt St
38h | Interrupt vector | Soft ISR ad. | |
s T B e ettt +
40h { |
+ |
48N | Resarved for EXOS code/data |
+ +
50h | |
+ e N s
58h | | |
bt e Rttt 2 +
60h | |
+ Reserved for CP/M emulation +
68h | ' |
+ (D2fault FCB) +
70h | |
+ +
78h | |
- T T T it
80h |
. . Recserved for CP/M emulation .
. . (Default butter area) .
F8h | '
T T T e s St Sttt 2

The areas which are 1listed as reserved for CP /M
emulation can be used by any orograms which do not require
CP/M compatibility, but are never used by EXOS. The system
entry points will be described below.

" 29-Nov-84 EXOS 2.0 - Kernel Specification - Page 9

I | An applications program is started up by being entered
at 1its entry point address with a certain action code and

- possibly a command string (see section on scanning

} o/ ~ extensions). To take control of the system, the user must

do an "EXOS reset" call with the reset f{lags set correctly

depending on the action code (se2 the saction on scannilng
Y extensions and also the description of the "EXOS reset"
d call). Having done this call, the uszer must set up his own

stack and then enable interrupts. It then has tull control
3 of the system.

The segment with the aovplications program code 1n, for
example the cartridge ROM, will always be entered 1in Z-80
page-3 by EXOS and generally it 1s convenient to leave 1t
permenantly in page-3, although i1t can be moved 1ir desired.
When an EXOS call 1s made, or an interrupt occurs, than
contents of pages 1, 2 and 3 will be changed, possibly many
times, but will always be restored to their original
segments before returning to the |user. Thus whatever
paging the user sets up will be preserved by all EXOS calls
and 1nterrupts.

 S—

4.1 EXOS System Calls - General

An EXOS call 1s made by executing a "RST 30h"

_ instruction, The area from 30h to 5Bh contains cod= to

J handle the transfer of control to the main EXOS ROM and

also to handle the return to the user. This entire area

should not be modified by the applications program at all,

except for the software interrupt addrass at 3Dh and 3Eh
(described later).

A

. <

The different EXOS calls are derined by a ona byte

- function code which 1mmediataly zollows th=2 "RST 30h"

instruction. Parameters to the EXOS calls are passed 1n

registers A, BC and DE, and these registers are also usad

to return results. Register A always returns a 3status

value which 1s zero 1f the call was successrcul and non-zero

1f an error or unusual condition occurred. Ther=2 15 a

function call which wi1ill provide a simple text sStrlng
explanation for these status codes.

Registers AF, BC and DE will not ba preservad by any
EXOS calls except 1in certain specific cases which are noted
in the da2tailed descriptions of the calls. The contents of
all other registers, (HL, IX, 1Y and tha2 altarnate registar

t -

| Qi

A o

t set 1ncluding AF'), and of the rour 2Z-80 page reglsters,

- will be preserved by all EXOS calls, except 1n a tew
specific cases which are also notad 1n the detailed

] functional descriptions.

-

Y -

w

f !

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 10 '

EXOS always switches to an internal system stack in the s
system segment whenever 1t 1s entered, and therefore uses
very little space on the user's stack. However, at least 8 Ve
oytes should always be available beyond the top of the
stack. Even 1f no EXOS calls are made, this space is
required for interrupt servicing. The program stack should
also Dbe managed correctly such that there is never any
wanted 1nformation above the stack pointer, it can be
anywhere 1n Z-80 memory, provided it is in RAM of course.

The system calls will be explained in more detail later
but here 1s a list of them all with their function codes.

Code Function

0|
0 System reset
1 Open channel
2 Create channel
3 Close channel
4 Destroy channel
5 Read character
6 Read block
7 Write character
8 Write block
9 Channel read status
10 Set and rzad channel informacion
11 Perform special function on channel
16 Read/Write/Toggle EXOS Variable
17 Capture channel
18 Re-direct channel
19 Set default device name
20 Return system status
21 Link device
22 Read EXOS boundary
23 Set user boundary
24 Allocate segment
25 Free segment
26 Scan ¢<ystem extensions
27 Allocate channel bufrter (dzvice only function)
28 Explain error code
29 Load module
30 Load relocatable modul-=
31 Set time
32 Read time
33 Set date -
34 Read date
*T™10/10 CAntIrimheE (Y T00A Teaballimmane CaAflrrnva T imibtad

‘l-—r--l‘

h

.. S

b

|

h_d b o Lo WL,

_ s

b4 V.o

A\ -4

29-Nov-84 EXOS 2.0 - Kernel Specificatién ~ Page 11

4.2

tunction calls 1 to 11 are device calls. They each take
a channel number 1n ragister A and the call will be passed
on by EXOS to the appropriate device driver for that

chann=1. Almost all of the othar functions are handled
entirely within tn: EXOS Kernel. The exceptions are: "Scan
system extoasica:" (cod2 26) which is an explicit regquest
to pass a command string around all ROM and RAM 2xtensions,
and "load module" (29), ‘'“explain error coade" (28) and
"reaa/write/toggle EXOS wvariable" (16) which will offer
thelr parameters to any excansions 1f they are not

recognised.

When a device or system extension has control as a
result of one of these calls being made, it is able to make
1ts own EXOS calls. In this way EXOS 15 re-entrant,
although there are some limitations on tils, Device
drivers are not allowed to open or close channels when thev
have control (because of channel buffer moving problems -
see later). The "allocate channel burfer" call (code 27)
can only be made by a device during an open channel call,
the user should never make this call.

The EXOS calls which can result:*in nested EXOS calls
being made <carry out stack checking to ensure that the
internal system stack does not overflow. This effectively
limics tne depth of nesting allowed although there is an
absolute limit or 127 levels beyond which the system will

not work. It is difficult to imagine this depth of nesting
belng required.

Hardware and Software Interrupts

EXOS uses hardware 1interrupts to keep 1its clock/
calendar up to date. Each device driver can also have an
interrupt routine which EXOS will call whenever a specified
type of 1nterrupt occurs. Datails orf this are given with
the explanacion of device descriptors. There 1s no
racility for the wuser to have an 1lnterrupt routine.

However the user 1s provided with a facility rfor handling
software interrupts.

Software interrupts provide a way ior the user to be
alerted to various events occuring within EXO0S. A software
lnterrupt 1s triggered by a device driver's interruot
routine detecting some special occurence, such as the
network driver having received a block of data from the
network. When this cccurs the device stores a "software
interrupt code®™ in the variable FLAG_SOFT IRQ which is in

the system segment. This code indicates what the reason
for the software interrupt was.,

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 12

Nothing else occurs until EXOS is about to return to the
user, which may be directly from the interrupt routine or
may be very much later if the interrupt occured while a

device driver was executing. At this time a software
interrupt will be carried out if the user has defined a
non-zero "software interrupt address”. This address 1s

defined simplv by storing the address at 3Dh and 3Eh 1n
page-0, which is in fact the operand of a jump instruction.

The software interrupt is carried out by EXOS jumping to
the sorftware interrupt address (which can be in any Z-80
page) 1instead of executing the normal "RET" 1instruction
which would return to the user. The environment will Dbe
exactly as it would be if the return had been made, with
the correct paging and stack pointer. The return address
will still be on the stack so the software 1interrupt
routine may return to the main program. Ift it does return
then ALL registers must be preserved, as 1t could be
interrupting any point 1in the user s program.

It 1is not necessary for the software interrupt routine
to return if it doesn t want to, 1t can caus2 some sort of

warm re-start of the user's program.

The software interrupt routine can find out the software
interruot code by reading an EXOS variable CODE_SOFT_IRQ.
This 1is in fact a copy of the code set up by the device
since the <code itself is reset to zero before jumping to
the routine to prevent multiple responses to the software
interrupt. If more than one software 1nterrupt occurs
before the software interrupt routine can bz called then
only the most recent one will b2 ackxnowledged.

All sources of software interrupts Irom built in devices
can be enabled or disableda by setting appropriate EXOS
variables, or making special function calls. The codes
from built in devices are:

l10h...1Fh - ?FKEY.... Keyboard :ifunction key pressed
20h - ?STOP Keyboard STOP key pressed
21h - ?2KEY Kayboard any key pressed
30h - ?NET Network data rec21ived
40h - 2?2TIME Timer EXOS variable reached 0

ET10/10 Copyright (C) 1984 Intelligent Software Limited

-

A

N

7V VY 9%

'~

2 en

Y TN e\ ey

B-an. b

t---‘ L--‘

b -

Ao

bev L.o L_4

bew L4

A —J

29-Nov-84 EXOS 2.0 - Kernel Specification Page 13

4.3 The STOP key

The stop key is one of the possible sources of software
interrupts in EXOS. However it 1is rather a special case.

The reason for this 1is that pressing the STOP key should

always cause an immediate, or almost immediate response.
However, the system 1is frequently waiting 1n a device
driver for something to happen (such as the editor walting

- for a key to be pressed), or 1s just doing something which
will take a long time (such as the video driver doing a
fill). In these cases 1f the STOP key only caused a

software interrupt there would be no immediate rce¢spon:z=e.

The solution to this is that whenever any device 1is
doing something which 1s potentially a slow, or non-
terminating process, 1t checks the value orf FLAG SOFT IRQ

periodically. If 1t contains the code ?STOP then the STOP
key has been pressed. The device then i1mmediately, or at
least woon, reeturns back to EXOS with a status code .STOP.

Eventua: Ly this code will tfind 1ts way back to the
ussr ahid the sortware 1nterrupt will occur.

In ract in scme cases the situatlion 1s worse than this
because 1t 1s necossary to lnterrupt a process which runs
with normal EXOS interrupts disabled, so the keyhcard 1is
not beiling scanned. An example of this 1s the cassette
drivar writing or reading from tape. However 1n these
cases the devicza 1tself contains code to look at the STOP

key and wi1ill cause both the software 1nterrupt, and the
error return 1itselrt,.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

.

29-Nov-84 EXOS 2.0 - Kernel Specification Page 14

5. SEGMENT ALLOCATION .
Segment allocation was explained briefly in the system ‘

overview and will be described in more detail here. At N e

cold reset time, EXOS builds up a list of all available RAM |
segments, testing each one. The system will not function :

unless at least 32k (two segments) is available, and this
must include segment OFFh which will be the system segment.

The lowest numbered RAM segment is taken out of the list

and used as the page zero segment. This segment 1s never -
used 1in any form of allocation, 1t remains in Z2-80 page-0 i
for evermore.

Each RAM segment 1in the list can be 1in one of five ¢
different states which are: .

Free
Allocated to the user
Allocated to the system

Allocated to a device/extension
Shared between the system and the user

¥ N ey

The number of segments in each of these catagories can
be determined by making a "return system status" EXOS call
(code 20), which is explained i1n the detailed function call

specifications later on.

The system segment (segment OFFh) 1s always either /-
allocated to the system or shared, 1t can never be free.
All other segments are 1nitially free except for the page
zero segment which is outside this allocation scheme.

t

5.1 User and Device/Extension Segments ~
When the wuser makes an "allocate segment"” EXOS call
(code 24), 1if there are any free segments then one of them
will be marked as allocated to the user and 1ts segment
number wi1ll be returned. The user can obtain as many
segments as he likes in this way, 1limited only by the
number of segments available. H2 can also free any

seaments which he has been allocated by making a "free
segment" EXOS call (code 25).

Y vy ey ey ey

"3

Ty

Segments can become allocated tc devices/extensions in
several ways. A device driliver can make Aan allocate segment
call in the same way as ths user, and if a segment 1s
avallable 1t will -be marked as allocat~d to a
device/extension. Also a device can free scqments in the
same way as the user. Device/extension 3~cgm>nts can also
bercome allocated when a system extension 1s loaded (see
drtails of "load module" EXOS call), or at startup time
when an extension ROM is linked 1in (1f the ROM requests

one - see section on extension ROM 1niti1alisation).

"y

4
.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 15

(;_.r”

R .

9.2

& &

k. _4 h_4A A _as

k.4

£E. 324 L_12 i L_a

L s £
.

Any segments allocated to devices/extensions or to the
user will remain allocated after a warm reset. Also
device/extension segments (but not user segments) will
remain allocated when a new applications program 1s started
up . Great care must be taken with any device that does
allocate RAM segments to 1tself, to ensure that they are
freed when the device has finished with them. Particular
care must be taken with device 1nitialisation since a
device can be re-initialised and will still have the
segments allocated, so it must remember this and not try to
allocate 1tselr new segments.

Whenever a user or a device/extension segment 1s
requested, the lowest numbered available segment will be
allocated. This ensures that the video segments, which
have high numbers, are kept as much as possible for the
system so that they will be availlable for' video channels.

System Segments and the EXOS Boundary

Segments which are allocated to the system are basically
used for channel RAM areas. The system uses RAM starting

at the top of the system segment, down as far as ncecessary,
possibly continuing into other segments. The top of tne
system segment 1s used for system variables, system stack,
device RAM areas (sze explanation ot devices and deviyice

deszcriptors) and RAM areas tor extension ROM:. ot
these must be contalned 1n the system segment. Below tacse
there 1s a chain of channel descriptors, each witt an

assocliated RAM area, whilich can occupy as many segnents as
necessary. This wilill be described 1n more detail later.

Any scegments which are used for channel RAM are marked

as !l locaced to the system., Each segment 1s used frow the
Lo Jdewn uactil 1t becomes full, at which time another
z2g.c it 1y allocatad. Thus all system seagments wil!l be
tally used, except for the last one which may 2ave Sche
space L2ttt 1n rre bottom. There 1s a system vacluaole the
"EXOS boundarv" wl.ich indlcates the lowest aadress 1 tne

last system sSequent which 1s belng used. This valo: can be
read by doing a "read EXOS boundary" call (ccde 22) wnich
returns a value 1in the range [0000h to 3FFFh].

New system segments can be allocated when a channel 1s
opened or when a user device or system extension 1s linked
in. When a channel 1s closed and the associated channel
RAM 1s freed, this may result 1n the channel RAM usage
moving out of a segment, 1in which case the segment will be

freed and the EXOS boundary set up for the previous
segment.,

ET10/10 Copyright (C) 1984 Intelligent Software Limited

4

'3

29-Nov-84 . EXOS 2.0 - Kernel Specification Page 16

5.3

EXOS always allocates the highest numbered segment

available when it needs a new segment for the system. This
ensures that as much contiguous video RAM as possible 1is

available for video channels, since video segments are the
highest numbered. If a video segment becomes free while
the system is using a non-video segment then the two will
be swapped, although this will only be done next time a
channel 1is opened. - '

The Shared Segment and User Boundary

There can be at most one RAM segment which 1s shared
between the user and the system. If it exists, this will
always be the last of the segments used by the system and
will therefore <contain the EXOS boundary as described

above.

The user will be allocated a shared segment if he makes
an "allocate segment" call whean there are no free segments
available. This fact is indicated by a specific status
code (.SBEARE) being returned by the allocate segment call
and the user will also be told the current position of the
EXOS boundary within this segment (see description of
"allocate segment" call). A device or a system extension
can nevcr be allocated a shared seaqinent. '

Whan the shared segment is allocated, a second boundary,
called the "user boundgary", 1s crhated within the segment.
This is in addition to the EXOS boundary and will initially
have the same value. The user can at any time et a new
position for the user boundary by makina a "set user
boundary" call (code 23). The user boundary can be set to
any value from zero, up to and 1ncluding the current
setting of the EXOS boundary.

The user can use the segment from the start up to (but
not including) the user boundary. EXOS 1s always using the
srament from the top, down to (and 1including) the EXOS
bcundary. The area in between the two boundaries (which
may be zero bytes) is no man's land and must not be used
elther by EXOS or by the user. Howzver EXOS may, when 1t
requires more RAM, move the EXOS boundary down as far as
the user boundary. Similarly th2 user may move the user
boundary up as far as the EXOS boundary when 1t needs more
R AM. In this way the sharing of the segment between EXOS

and the user 1is flexible and can change.

The segment can become un-shared when a channel is
closed, if EXOS no longer needs the segment. Also the user
can free the shared segment in which case 1t will be
flagged as allocated to the system, Having freed 1t, the
user can always allocate 1t again of course.

ﬂmﬁﬁ ’I‘H H-—ﬂ--- —:-—1—-L ,H‘ 1“‘“' T.-.--.pu-ﬁq" -.--I--:L 'H.-u :‘- ''''' T‘:"-‘LAA

-y

)

r— Y "y

—

| A

S

— Y

)

SR

e - sl

‘-—ﬂ

- <l

-~ R B | N o 4

B.. -4

R ol

L s e il

l'-h--l!!-—-d---‘

29-Nov-84 EXOS 2.0 - Kernel Specification Page 17

When a channel is opened, 1if there 1s a shared segment
then the EXOS boundary will usually have to be moved down.
The user boundary should therefore be moved down as far as
possible before opening a channel, to make space. Also, 1if
a segment has becomes free while there 1s a shared segment
(it could have been freed by the user or by a device or
extension), then EXOS 1is unable to allocate this to the
system, although it can be allocated to the |user. This
means that it is advisable for the user to free the shared

segment as soon as possible, maybe copying the contents
into a new segment, in order to make the best use of RAM.

5.4 System Segment Usage

The system segment has been mentioned several times
be fore. This section gives details of how it is used, and
certain addresses. Further details of the various sectilons
of RAM which can be allocated in it will be explained 1in
the relevant sections.

The very top of the system segment contains a few
variables which are at defined absolute addresses and can
be used either by the user or by devices. Some of these
have already been explained and others will be mentioned
later. This 1list just gives the address and name of each
one, along with a very brief description.

99-*!'5! OBFFFh - USR_P3 \ These are the contents of the four

,5',7\ >’

" &5 O0BFFEN - USR_?Z \ paging registers when EXOS was last
42 QBFFDh - USR Pl / called. Needed by devices when
ué¢ Q0BFFCh - USR PO / given user addresses.

./5/y30BFFA/Bh - STACK_LIMIT Used for stack checking by
/ devices which need more than
< , | | - the default amount of stack.

- i. |*‘ Jr ,. - ¥ " = f’l .
. r % * ard < - NN
i ¢ S

4va}OBFF8/9h - R?T_ADDR User's warm ceset address.
[| 268
= [1,2 0BFF6/7h - ST POINTER The 2-80 address of the status
L{ /1~ . - .
N cERL ~ line memory. The 42 Ddytes
e &3 from this address onwards are
3_/5:323--:195&3 the status line (sece video
' ~ driver specltlcation).

49/43 . 0BFF4/5h - LP POINTER The Z2-80 address of the start of

ET10/10

! ! P!'f -Ff h f

rf

L the liline parameter tuble (see
- video driver specification).

A0 O0BFE3h - PORTBS Current value of general output
J port O0BSh. Used by various
devices whlch access this
port. See device driver

specs for description.

Copyright (C) 1984 Intclligent Software Limited

29-Nov-84 ' EXOS 2.0 - Kernel Specification Page 18

OBFF2h - FLAG SOFT_IRQ Triggers software interrupts.
OBFF0/1h - SECOND_COUNTER l6-bit seconds counter.

OBFEFh - CRDISP_FLAG Flag for <suppressing sign-on
” message. |

Rolow these fixed variables are all the 1nternal system
variables for the EXOS kernel, and also RAM areas for all
the built in devices. These RAM areas include space for
the 1line parameter table, characrer tont, tunction Kkey
<trings, sound gueues, etc, ac well as variaoles for each

davice. This area also 1includes space ftor the EXOS system
stack which is used by all devices and syst~m ~x'~nszlons.
T:> size of this ar=ea 1is {fi1x~d ior any »n v .o nf FEXOS,

Below this fixed area is the list of RAM segments, and
blow that the list of extension ROMs, both of which wvary
in size depending on the number of extension RAM and ROM
units connected. Below these lists 15 any system segment
RAM allocated to extension ROMs when they are 1initialised
(see later for explanation). These areas are all set up at
cold reset time and then remain fixed.

Below this are the device descriptors for all built 1n
drvice drivers and also any dz2vice drivers contained 1in
extension ROMs, This 1includes any device RAM areas
required by extension ROM devicecs, Built in devices have
their device RAM allocated permanently in the fixed RAM
area and so do not reguire any RAM here. This area 1s
newly set up whenever a "reset EXOS" call is made, with the
reset flags set to re-link devices (see description of the
reset EXOS call), which 1s generally when a new
applications program takes control.

When a user device is linked in, this area will be
extended downwards to include any device RAM which the new
device requests. This will result in everything below this
are being moved down. Once allocated this device RAM
will remain until devices are re-linked (see above), which
will destroy the user device driver.

All of the above areas must lie wholly within the system

segment. Any attempt to allocate RAM which would push them
out of this segment will fail.

Immediately below the user device RAM area 1s the start

of the channel RAM area: This must start 1in the system
segment, but can run down 1nto as many other segments as
required. The channel RAM area includes a channel

descriptor, and a RAM area for each chann2zl which 1s

- currently open. These RAM areas can be moved around Dby

EXOS when other channels are opened or closed, oOr user
devices linked 1n, They are explained in detail 1in the
section on channel RAM allocation.

0

a9 R -

b . -8

. -4

|

-4 b_a

A4

b4

L4

\ _J

- -

e

29-Nov-84 EXOS 2.0 - Kernel Specification Page 19

It 1s clear from the above description that the sizes
and addresses of most of these areas vary depending on the
hardware and software configuration. However as an example
the diagram below shows the addresses for a standard 64k
machine with a single ROM cartridge, such as the IS-BASIC
cartridge, fitted. This should only be used as a guide
since the exact sizes and addresses may vary in future
versions. The addresses are given in 2-80 page=2, since

this 1s where the system segment is normally accessed by
EXOS and devices, although it can of course be paged in to

any of the Z2-80 pages.

Address . | Size
BFFFh: |
ee e Defined address variables (list above) 17
BFEFh:
Internal EXOS system variables ‘ 267
BEE4h: : |
Device RAM areas for built in devices 3212
B258h: |
Space for EXOS RAM resident code | 60
B21Ch: |
---------------------------- _1
System stack 1604
ABD6h: |
‘ RAM segment list, 1 byte per segment ' 4
ABD2h: |
L LT B2 e e
Extension ROM list, 4 extra bytes per ROM 12
ABC6h: |
_____________________________ |
RAM areas for extension ROMs 0
' ---------------------------------- |
| Device descriptors for built in devices 132
AB4lh: |
. | Start of channel descriptor chain

25

ET10/10 Copyright (C) 1984 Intclligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 20

6.

DEVICE DESCRIPTORS

6.1

6.2

The Device Chailn

Every device driver has a "device descriptor" 1in RAM
com2where which defines the device s name, the address of
the device driver code and various other details. They are
Kept 1n a 1linked list (called ¢the device chain), and
whenever a channel is opened, EXOS searches this list for a
device with the correct name and ovens the channel to that
gevice.

The device chailin 1s re-built whenever a "reset EXOS"
call 1s made with the reset flags set to re-link devices
(see details of the reset EXOS call). This occurs at cold
reset time and when a new aoplications program takes
control. The chain 1s 1nitially created with a descriptor
for each of the built in device drivers, and also for any
device drivers contained in extension ROMs. .

The user, or a system extension, can link in new devices
with a simple EXOS call. These will be added to the device
chain but will be lost when the chain is re-built.

Details of Device Descriptors

The format of a device descriptor 1s given here. Each
element 1s one byte, apart from the device name which is of
a varlable size. The offsets given are offsets from the

DD_TYPE field since this is where the device chain pointers
point to. ‘

-3 DD_NEXT LOW \ 24-bit address of DD _TYPE field of

-2 DD _NEXT HI > next descriptor. Address will be 1in

-1 DD NEXT SEG / 2-80 page-l. End of chain indicated
by DD NEXT SEG=0.

+0 DD TYPE Must be zero.

+1 DD IRQFLAG Defines device interrupt servicing.
+2 DD FLAGS b0 set for video device. bl-b7 clear ﬁ
+3 DD TAB LOW \ 24-bit address of device entry point
+4 DD_TAB_HI > table. Address must be in Z-80

+5 DD _TAB SEG / page-l.

+6 DD _UNIT COUNT Normally zero. Non-zero to allow

multiple devices with this name.

+7.. DD NAME Device name string.

L

A . . -8

b &

! J— i - A A....8

L—d

b ed

ET10/10

29-Nov-84 ~ EXOS 2.0 - Kernel Specification Page 21

The DD TYPE field 1is provided to allow for future
expansion and also to enable a device to be disabled. This
happens for example when a new device 1s linked in with the
same name as an existing one, The old device w1ll be
disabled (unless DD_UNIT_COUNT is non-zero - see below).

The DD IRQFLAG field has one bit for each of the four
sources of interrupts in the Enterprise. If the
appropriate bit is set then this device driver's interrupt
routine will be enterzd whenever an interrupt of that type
occurs. Any combination of bits can be set. The bit

assignments are:

bl - Programmable sound 1interrupts

b3 - 1lHz 1nterrupts '

bS5 - Video interrrupts (50Hz)

b7 - External interrupts (network)
b0,2,4,6 - Should be zero.

Bit-0 of the DD FLAGS byte is used to control <channel
RAM allocation, which is dirfferent for video and non-video
devices. It will be explained in the section on channel
RAM allocation. ’

The entry point table address (DD_TAB SEG, DD_TAB_HI and
DD TAB LOW) points to a table of two byte entry addresses,
one for each function which a device has to perform. The
address given in the descriptor must be in 2-80 page-l
since EXOS accesses the table there. However the entries
in the table itself must be in Z-80 page-3 since when EXOS
calls a device it puts the devices code segment 1n page-3.
The entry ooints themselves must all be 1n the same segment

as the entry point table, The entries 1n the table are
listed here and will be explained in the section on device
drivers.

+0 Interrupt (Need not be valid if DD_IRQFLAG=0)

+2 OPEN CHANNEL

+4 CREATE CHANNEL

+6 CLOSE CHANNEL

+8 DESTROY CHANNEL

+10 READ CHARACTER

+12 READ BLOCK

+14 WRITE CHARACTER

+16 WRITE BLOCK

+18 READ CHANNEL STATUS

+20 SET CHANNEL STATUS
+22 SPECIAL FUNCTION
+24 Initialisation

- +26 Buffer moved

The entry points in capitals correspond directly to the
relevant EXOS calls, the others are generated inside EXOS.

Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 22

The DD UNIT COUNT field 1is normally zero but can be set
non-zero to allow multiple devices of the same name to be
handled by translating unit numbers. This 1s explained &
fully in the section on opening channels.

The DD NAME field is the device name itself. The first
byte of this 1s a length byte, followed by the characters
of the name 1in ASCII. The name can be up to 28 characters
long and must consist of upper case letters only.

6.3 Extension ROM Devices

At offset 0008/9h in every extension ROM is a pointer to
the start of a chain of devices. It ther2 are no device
drivers 1n the ROM then this pointer should b= zero. Each
element 1n the chain 1s basically a device descriptor as
de fined above, but with certain fields missing, or replaced
by other i1information. The layout of one of these pseudo-
descriptors 1is:

XX NEXT LOW \ 1l6-bit pointer to XX_SIZE field of

XX "~ NEXT _HI / next pseudo-descriptor. In Z-80 page-l

XXTRAM LOW \

XX RAM HI / Amount of device RAM required.

DD TYPE \ These fields are exactly as 1n a

DD _IRQFLAG | complete device descriptor defined

DD_FLAGS | above. The DD_TAB_SEG field can

DD TAB LOW '\ have any value since EXOS fills

DD _ TAB_ HI / this in when it links the device.

(DD _TAB SEG) | '

DD UNIT COUNT |

DD NAME / .
--=> XX SIZE Size of pseudo-descriptor (see text)

The device chain pointer at the start of the ROM points
to the XX SIZE field orf the first pseudo-descriptor, 1in
nage-1, Similarly the chain pointer (XX NEXT LOW and
XX NEXT HI) 1n each pseudo-descriotor points to the XX SIZE

field of the next one, in Z-80 page-1. The end of the
chain 1s marked by a pseudo descriptor with both DD NEXT HI
and DD NEXT LOW set to zero. -

The XX SIZE field is a count of the number of bytes 1n
the descriptor from DD _TYPE to the device name. Thus 1if
the device name was one character long, DD SIZE would be 9.

(—

29-Nov-84 - EXOS 2.0 - Kernel Specification Page 23

The main descriptor fields (all those starting with DD)
will simply be copied into RAM when the device 1s linked
in, and a three byte link added to the start to create a

> .

! . complet2 device d;scrlptor. Note however that EXO0S f1ills
g ‘in the DD _''AB_SEG rfield, since a ROM on the expansion stack

cannot Kknow what segment it will be in. This means that
Y the entry point table must be in the same segment as the
d pseudo-descriptor.

, | The XX SIZE HI and XX_SIZE_LOW fields deflne a lé-bit
number which is the amount of davice RAM which Lhis device

requires in the system segment. This number must be storcd
in two's complement and with an offset added to allow for
T the three byte link which EX0S puts on the start of the
4 descriptor. If no device RAM 1s requilred then the value

should be FFFEh (-2). If one byte is required it should be
FFFDh (-3) and so on. -

Whenever the device is entered register 1Y will point to
its device descriptor, as will be explained in the section
on device drivers., Since the device RAM 1is allocated
immediately below the descriptor, the device RAM can be
accessed relative to 1Y, If "n" bytes are requested then °
these can be accgssed at addresses:

L-.-—‘ L-‘

IY-4 ’ IY_S ’ e o o 0o} IY"4"'H

)
<

.) Y

6.4 User Devices

User devices are those which are linked in with a "link
device"™ EXOS call which can be made either by the user or
by a system extension. To link 1n a user device a complete

| device descriptor must be set up in RAM. All fields of

\ this must be complete except for the 24-bit link

(DD _NEXT SEG, DD NEXT HI and DD_NEXT LOW). The EXOS call

is then made with DE p01nt1ng to the TYPE field of this
~descriotor, which <can be 1n any Z-80 page.

An area of device RAM can be requested by simply settling
register BC to the amount reqguired. This RAM will Dbe
allocated below the device RAM ror any ROM extension
devices. The device driver will be passed the address of
this RAM area in register IX when 1t 1is first 1initialised.
If "n" bytes are requested then they can be accessed at:

b4 L_4d Kk _a

Ix-l' IX_Z' e e 0o o} Ix-n

Note that this address will only be passed i1in IX on- the

D L U S W

first 1nitialisation. It 1s the responsibility of the
_ device driver to remember the address for future use, even
J when it is re-initialised such as after a warm reset.

t-""'—"""d

—

_ _ 27

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 24

7. DEVICE DRIVERS

7.1

A device driver consists of a set of routines, one to
implement each of the fourteen entry points contained in
the entry point table which was described in the previous
chapter. This chapter describes the functions which must
be provided by each of these routines, including details of
register usage. '

Device Driver Routines - General

Of the fourteen device driver entry points, eleven of
them match up directly with EXOS function codes 1 to 11.
Whenever the user makes one of these EXOS calls, EXOS will
find out which device is the correct one for this channel
and call the appropriate entry point of that device driver.
These calls are referred to as the "device channel calls".

The three remaining device driver entry points are, for
initialisation, lnterrupt service and channel Dbuffer
moving. Calls to these three routines are originated from

within the EXOS kernel at appropriate times and each is
discussed in detail below.

Whenever a device driver routine is entered, the segment
containing the entry point will be paged into Z-80 page-3.

~Page-2 will always contain the system segment (segment

e e hialN A

OFFh), and page-0 will of course contain the page zero
segment. In the case of the device channel calls, the
segment containing the channel descriptor and channel RAM
(see later) will-be in page-l, for other calls the contents
of page-l will be undefined. The stack pointer will be set
to the system stack, 1in Z-80 page-2, and there will be at
least 100 bytes available on the stack, in addition to that

needed for 1interrupt servicing (only 50 bytes for an
interrupt routine).

When an device driver 1is called, register 1Y will always
contain the address of the DD TYPE field of the device
cescriptor, 1n Z-80 page-2. In the case o0of extension
devices (linked in from extension ROMs), this can be used
to access the device RAM which is allocated immediately
below the device descriptor in the system segment. A user
device may sometimes have to access RAM relative to its
device descriptor, which will not be in the system segment,
so 1t will have to page the correct segment in (remembering
to disable interrupts temporarily sine the stack will be
paged out). To enable a user device to do this, the
segment number of the segment containing its device

descriptor is passed in register B' whenever the device is
called. - ' '

Y o » . . P - e oam -

| W—

s

kw# L--‘ Lﬂ.- v b

 S——

Lb.e L.o

.2 (L_a ¢ _a

L .4 L.o

' A .«

L-—n- P -H“J

29-Nov-84 EXOS 2.0 - Kernel Specification Page 25

7.2

7.3

Device driver routines <can corrupt all registers,
including the 1index registers and the alternate register
set, since they will have been saved by EXOS. The device
driver can also corrupt the contents of Z2-80 page-l with
impunity, but should exercise caution with the other Z-80
pages. Generally registers A, BC and DE are used to pass
parameters to and return restlts from the routines.

Device Initialisation Routine

The device initialisation routine 1s nassad no
parameters (other than the segment ana address o0 the
channel descriptor 1n B' and 1Y), and returns no r2sults,

It 1s called when the device 1s first linked :10:zo tne
system, and agaln whenever a "reset EXOS" function call 1s
made , which occurs at a warm reset or when a new

applications program takes control.

Any channels which the device may have open will wvanish
when this rourine 1s called, and so any variables or data
arcas whicn Lne device may keep must be reset. Note that

any RAM segmaents allocated to the device will not be rfreed,
sO0 the device must remember that 1t still has thase a:iter

subsequent 1lnitialilsations.

Channel RAM Allocation

Every channel which 1s open has an area of "channel RAM"
allocated to 1t. It 1s the job of the "open channel" or
"create channel" routines (described below) to make an

"allocate Dbuffer" EXOS call to obtain the reguired amount
of RAM. The allocate buffer EXOS call will be describded
later. This function call MUST be made berfore the open or
create channel routine returns to EXOS, <even if zero bytes

of channel RAM are required, since it also sets uo a
channel descriptor for the channel.

When the "allocate buffer" call 1s made, 1t will return
the address of the channel RAM 1n register IX. This will
be 1n 2-80 page-l1l and the correct segment will be vpaged
into page-l. Whenever the device driver is entered 1in
future with a channel call to this channel, opage-l1 and
register IX will be set up correctly. If "n" bytes of

channel RAM are allocated then they can be accessed at
addresses:

Ix-l, IX"Z; ®o o0 o} Ix-n

The 16 bytes of RAM immediately above tha channel RAM
(IX+0....IX+15) contain a channel descriptor. This
contains system 1information about the channel and should
not be modified by the device.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

|38

29-Nov-84 EXOS 2.0 - Kernel Specification Page 26

In the case of non-video devices, the channel RAM will
all be 1in one segment. In the case o0of video devices
however, only a certain amount of the RAM, specified by the
device and starting at IX-1l, will definitely be 1in one

 segment, the rest may carry on down into other segments.
If this 1is “the case then each new segment will have a
segment number one less than the previous one and they will
all be video segments (0FCh to O0FFh). This allows a video
device to obtain sufficient RAM for a large video page.
Normally only the built in video driver will be a video
device, although any device can make itself one simply by
having a bit set in its device descriptor (see above).

Once allocated the channel RAM can be moved by EXOS.
This can only occur when another channel 1is opened Or
ciosed, or a user device linked in. Since devices are not
allowed to make any of these EXOS calls, it is impossible
for the channel RAM to be moved while the device driver 1s
executing. Whenever the channel RAM is moved the "buffer
moved" entry point of the device driver will be called.
This entry point 1s described below.

7.4 The Buffer Moved Routine

The "buffer moved" entry point 1is called by EXOS
immediately after it has moved a channel buffer of this
device. This routine returns no results but is passed the
following parameters:

b':IY = Device descriptor segment & address (as usual)
IX = New address of channel descriptor, will be paged
into Z2-80 page-l.
A = Channel number of channel buffer moved
BC = Amount that channel buffer has moved

The channel buffer may have been moved into a different

seqment. If the devicz needs to know this then it can read
the new segment number from the page-1 register. The
distance moved pvarameter in register BC 1s strictly

=pnaking a signed 17-bit number, with the sign bit missing.
This means that if, for example, a value of 1 1is passed 1n
BC, then this could mean that th> buffer has bzen moved
cither uo by 1 byte, or down by 65535 bytes. In practice
this difference does not matter since it only affrcts the
naw s2gmant number and this can b2 determined separately.

Whenever the buffer moved entry point 1S called,
interrupts will b2 disablzd and should not be re-enabled by
th2 device driver. This is to ensure that the device's

interruot routinz cannot be called while it 1s 1n an
1ntermedliate state.

k..o

| '

IR 4

A4

A 4

L-"-—d

L..d

o

F

29-Nov-84 , EXOS 2.0 - Kernel Specification Page 27

7.5 Device Interrupt Routines

EXOS can handle interrupts from any of the four possible
sources on the Enterprise computer (video, sound, 1lHz and
external). When an interrupot occurs, EXOS examines the
DAVE chip to determine which source it came from. It then
scans through the device chain calling the interrupt entry

point of any device which has requested servicing of this

type of interrrupt (by setting a bit in DD IRQFLAG in 1ts
device descriptor). When all devices have been called, the
interrupt 1is cleared in the DAVE chip, all registers and
pagling restored and EXOS returns to the 1nterrupted
program,

Interrupts are allowed at any time, including while
executing device driver code, except while certain system
variables are being updated or channel buffers are being
moved. Also, 1interrupts are disabled while servicing an
earlier interrupt, so there is no nesting of 1nterrupts.
If an interrupt from another source occurs while already
servicing an interrupt then it will be held up until
servicing of the first one is complete. Thus no interrupts
should be missed but they may be serviced late.

The interrupt entry point of a device driver 1s
optional, it 1is only required if the DD IRQFLAG field of
the device descriptor is non-zero. When a device is linked
in, EXOS will ensure that any sources of interrupts which

- the device wants to service are enabled 1n the DAVE chip.

The device's 1nterrupt routine will be entered just like
any other entry polnt, wlth registers B and 1Y sct up to
the device descriptor segment and address as usdal. NO
results are return2d trom the lnterrupt routine and all
reglsters can be corrupted (AF, BC, DE, HL, IX, 1Y, AF',
BC', DE*, HL'). The entry point will be called with
interrupts disabled and they should not be re-caabled,

nNe Lt e should the device attemot to resat the Interrupt
Llar 1ot oAVl cnlp - EXOS does that,

Thete i an EXOS variable (sece later) called
IRQ ENABLE STATE which da2fines which of the rfour sources of
lnterructs arce <Turrz2atly enabled. Any of them cana bDbe

enabled or dicacl-oa by changing this EXOS variable and
writing it out to the interrupt enable register 1n the DAVE
chip., This should be done with care since the Kkeyboard
will not be scanned if video interrupts are disabled so it
can be dirficult to recover from this.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

Fl.l_.
T,
S

|

29-Nov-84 EXOS 2.0 - Kernel Specification Page 28

7.6 Device Channel Calls

The device channel calls are the device entry points
which correspond with EXOS function codes 1 to 11. Full
details of these EXOS calls can be found in a later

section. This section describes them only from the
device's point of view.

All of these routines have <certain parameters and
results in common. These are: '

Parameters: B':IY Device descriptor segment and address

IX = Pointer to channel RAM 1in Z-80 page-l.
A = Channel number +1 (see next paragraph)
BC & DE = General parameters to routine
Results: A = Status code, returned to user
BC & DE = General results from routine

The channel number parameter passed to the device
routine is one greater than the channel number as specified
by the user. This 1is due to the way in which EXOS handles
channel numbers internally, and means that a device can
never be passed a channel number of zero.

The device driver does not n2ed to return with the
status register set depending on thz2 value returned in A,
The setting of flags 1s done by EXOS before returning to
the user.

T

7.6.1 Open Channel and Create Channel Routines

For 1wmost devices the open channel and <c¢reate channel
routines can be the same. The difference is only relevent
for file handling devices, where "open" 1s intended to open

an exl1sting file and "create" 1s 1ntended to create a new
oriz2.

The routine wi1ill be passed a pointer to a filename
string 1n DE (length byte first). This will have been
coplied from the string passed by the user, into a buffer 1in
the system segment, and wi1ll have been uppercased and

checked for syntax and length (maximum 28 characters). I1f

no filename was specified by the user then this will be
a null string.

The unit number specified by the user (or a default)

will be passed 1in register C. Unit numbers are explained
in the section on the "open channel" EXOS function.

]

LN - P ~l-u.-.r

| “Pr—

ET10/10 Copvriii.c (C

29-Nov-84 EXOS 2.0 - Kernel Specification Page 29

Assuming that the device decides that it will accept the
~open channel call, 1t MUST make an "allocate buffer™ call
Lo setup the channel descriptor and obtain any channel RAM
which it may need for this channel, Details of this call

All devices must provide a block read and a block write
routine, which are capable or reading or writing up to
65535 bytes. Some devices (such as disk) will lmplement
these intelligently, doing data transfers directly into the
user's buffer,. However most devices simply do repeated

calls to their own character read or write routines,
copying the bytes into Or out of the buffer.

Special care must be taken with'accessing the user's

buffer area, The buffer pointer jis passed in DE
from the user's call. This may point to any add
of the four 2-80 Pages, and refers to the Segment which was

ln that page when the user called EXOS, not when EXOS
called the device driver routine ' j -

therefore have to translate this address to one 1n Z-80
page-l, and page in the correct Segment 1n order to access
the buffer, but MUSt not forget the segment with

call was made. These are called USR PJ, USR P11, USR P2 and
USR_P3 and their addresses were glven in an earlier

Section. These variables are handled té=entrantly, so they

Note also that the user'’'s buffer can cross a sSegment
boundary and so the segmant may need to be

changed, and the
address adjusted Several times. Also the device shoulg

simply

If an error Occurs part way through a block read or

Write then registers DE and BC should be returned with

their values correctly adjusted to Indicate how much has

C) 1984 Inte''igent CAFturawva T i 2

SO L L T TR

29-Nov-84 EXOS 2.0 - Kernel Specification Page 30

8.

EXOS VARIABLES

The "read/write/toggle EXOS variable" EXOS call, which
will be described later, provides a way for the user, a
device driver or a system extension, %to access a set of
system variables without knowing thzir actual address.

The cc variables control many aoects of the system,
particularly 1in setting wup options for devices Dbefore
ovpening channels to them. The oncs« which are relevant to

particular built 1in device drivers are describzd 1n the
appropriate device driver specification but a comnlete list
1s 1ncluded here.

Fach variable has an 8-bit valuz, and 13 identified Dby
an 8-bit EXOS wvariable number. This list i1includes all
variables which are implemented by the EXOS kernel but
thore 1is a facility for system extz2nsions to 1mplement
further ones, with numbers above 127 (s2e next chapter).

Any variable can be set to any value irom z2ro to 255.
Howcver many of the variables act as switch2s to turn
something on or off. In these cases, zero corresponds to
"on" and 255 to "oft". The EXOS call to manipulate them
has a "toggle" function which does a ones complement of the
value and will thus switch from zero to 255 and vice versa.

0 - IRQ ENABLE_STATE b0 - set to enable sound IRQ.
b2 - set to enable 1Hz IRQ.
b4 - set to enable video IRQ.
b6 - set to enable external IRQ.
bl,3,5 & 7 must be zero.

1 - FLAG_SOFT_IRQ. This is the byte set non-zero by a
device to cause a software 1nterrupt. 1t
could also be set by the user to cause a
software interupt directly. This variable
is also available at a fixed address given
in an earlier section.

2 - CODE_SOFT_IRQ. This is the copy of the flag set Dby
the device and is the variable that should
be inspected by a software interrupt service
routine to determine the reason for the
interrupt.

3 - DEF TYPE Type of default device

0 => non file handling device (eg. TAPE)

- 1 => file handling device (eg. DISK)

4§ - DEF_CHAN Default channel number. This channel
number will be used whenever a channel
call is made with channel number 255.

-~

- -

‘.-F

| PR

-4

L .4

L4

EXOS 2.0 - Kernel Specification Page 31

5 = TIMER 1Hz down counter. Will cause a software
interrupt when 1t reaches zero and will

then stop.

- LOCK KEY current keyboard lock status

6
2 - CLICK KEY 0 => Key click enabled
§ - STOP_IRQ 0 => STOP key causes soft IRQ
 ¢>0 => STOP key returns code
9 - KEY IRQ 0 => Any key press causes soft IRQ, as
well as returnilng a code
10 - RATE KEY Keyboard auto-repeat rate in 1/50 second
11 - DELAY KEY Delay 'til auto-repcat starts
=> no auto-repeat
12 - TAPE_SND 0 => Tape sound enabled
13 - WAIT_SND 0 => Sound driver walts when gqueue full
<>0 => returns .SQFUL errOr .. o= -

14 - MUTE SND g => internal speaker active
¢>0 => internal speaker disabled

15 = BUF_SND Sound envelope storage size in 'phases’

16 - BAUD_SER Defines serial baud rate
17 - FORM_SER Defines serial word format
18 - ADDR_NET Network address of this machine

19 - NET_IRQ 0 => Data received on network will cause

a software interrupt
20 = CHAN NET Channel number of network block received

21 - MACH:NET Source machine number of network block
22 - MODE_VID Video mode \ These variables select
23 - COLR_VID Colour mode \ the characteristics or
24 - X_SIZ_VID X page size / a video page when it
25 - Y SIz_VID Y page size / 1s opened

26 - ST_FLAG 0 => Status line 1s displayed

27 - BORD_VID Border colour of screen

28 - BIAS_VID Colour bias for palette colours 8...16
29 - VID_EDIT channel number of video page for editor
30 - KEY_EDIT Channel number oI keyboard for editor
31 - BUF_EDIT Size of edit buffer (in 256 byte pages)
32 - FLG_EDIT Flags to control reading from editor

ET10/10 Copyright (C) 1984 Intelligent Softwara Limited

W)

i W b gl TR @

29-Nov-84 ' EXOS 2.0 - Kernel Specification Page 32

33 - SP_TAPE Non-zero to force slow tape saving

34 - PROTECT Non-zero to make cassette write out
protected file oo

35 = LV_TAPE Controls tape output level '

3¢ - REM1 \ State of cassette remote controls,

37 - REM2 - / zero is on, non-z2ro 1s off

1

L.o k.o

A .o

| N

l..._..a L._J L....J

e .5 L4

t

(4

-

t

s (4
"

L -

b

29-Nov-84 EXOS 2.0 - Kernel Specification Page 33

9. SYSTEM EXTENSION INTERFACE

When EXOS does a cold start 1t builds up a list of all
extension ROMs which are plugged 1in. Each of these ROMs
has a single entry point which is called under various
cirumstances with an action coede to indicate what function
the ROM 1s to carry out. This chapter describes all the
action codes and what the response to them should be.

There 1s a facility to load programs into RAM and 1link
them 1n as system extensions. Detalls of how this is done
and the file format will be given in the next chapter.
Once loaded these RAM extensions are treated exactly as 1if
they were ROM extensions, and wlll only be removed when a
cold reset 1s done.

There 1s an EXOS call provided to pass a string around
all system extensions to glve them a chance to carry out
some function. This results in the extensions being called
with action code 2 (command string) or 3 (help string), the
meaning of which will be explained in this chapter.
Details of the "scan extensions" EXOS call itself will be
given in the section on EXOS calls later.

9.1 Calling System Extensions - General

System extensions are called by the EXOS kernel and will
always be entered in Z-80 page-3 at their single entry
point, Page-2 will contain the system segment (segment
OQFFh) which will include the stack, and page-0 will of
course contain the page zero segment, ROM extensions can
b2 allocated an area of RAM at cold reset time (sees below).
The segment containing this RAM will be in page-l, and it
will Dbe pointed to by register 1Y, For RAM resident
extensions, page-l1l and register IY will be un-defined.

Note that ROM extensions are allowed ¢to make "scan
extansion™" EXOS calls while 1n their "allocate RAM"
routines. This can result in a ROM being entered with

action code 2 or 3 before it has had any RAM allocated.
This case can be detected by testing for segment number

zero 1in 2-80 page-l, which can only occur before RAM is
allocated, or if no RAM is requested.

An action code is always passed in register C, and
reglsters B and DE are used for passing various parameters
to, and returning results from, the system extension. All
other registers (AF, HL, IX, AF', BC', DE', HL') can be
corrupted 1f desired.

ET10/10 Conpyright (C) 1984 Intelligent Software Limited

ﬂ
.

29-Nov-84 EXOS 2.0 - Kernel Specification Page 34

System extensions are normally called by doing an
"axtension scan", which may originate from a user EXOS call
or be generated by the kernel. This involves passing the
same action code and parameters to each system extension 1in
‘turn. If the system extension returns the action code
unchanged, then the values passed back in BC and DE will be
passed on to the next extension in the list. Thus 1f a
system extension does not support a given action code or
command it should return BC and DE unchanged to ensure that
the scan continues.

If a system extension returns with register C set to
zero then the extension scan will stop, and the values
returned 1in registers BC and DE will be considered as the

results - the interpretation depending on the action code.
In this case, the value returned in register A 1s a status

code indicating success or failure using the normal EXOS
status code values.

The extension scan calls any RAM resident extensions
first, followed by any extension ROMs, The very last
extension in the <chain is the built 1in word processor

program.,

9.2 Action Codes

Below are detalis of each of the action codes. Any
values not included here are reserved for future extensions
and should be ignored by all system extensions, simply
returning with BC and DE unchanged. The action codes are
described in numerical order although the initialisation
and ram allocation ones are rather special cases.

A system exten51on can ignore any of these action codes
which it wants to, they are all optional. Any action code
which 1is not supported should be ignored by returning with
BC and DE preserved. It is acceptable (although not very
useful) for a system extension to consist of just a "RET"

instruction at 1its entry point.
The action codes provided are:

1. Cold reset

2. Command string

3. Help string

4, EXOS variable.

5. Explain error code
6. Load module

7. RAM allocation

8. Initialisation

&

=

Y

—~Y M Y Y Y rTTY

N

A - -

L.‘....‘

h-’ﬂ-—.d

Ao

A _ . A _a

L_ .

e

7/f 29-Nav-84 EXOS 2.0 - Kernel Specifidation Page 35

9.2.1 Action code 1 - Cold Reset

This action code is passed around all ROM extensions at

J cold reset time, when the copyright display program
terminates, in order to allow one of them to select 1itself

as the current applications program. The only other time

when this action code can he received 1s when an attemot to

load a new aonlications program fails (see section on

"loading funccions"). No parameters are passed and no
results are returna2d with this action code.

If the extension wants to set 1tself up as the current
applications procran than it simply goes through the normal
startup procedure (described below) and does not return
from this call. If the extension does not want to do this
then 1t Jjust returns from this call with register C (tne
action code) preserved. '

'9,2.2 Action code 2 -~ Command string

This action code results from a "scan a2xtensions" EXOS

call. It is passed a pointer to a string in register DE,

This string will have a length byte first and will be

stored in a buffer on the stack, so the "scan extensions"™

call 1s re-entrant. The first word of the string (up to

the first space character) will have been uppercased and

J register B will contain a count of how many bytes there are

| in this first word.

The first word is the name of a command, service or

program. Each extension will have a set of commands which
1t recognises. If the extension does not recognise this
command then it should return from the call, preserving BC
and DE, If it does recognise the command then 1t should
respond to it, possibly interpreting the rest of the string
as parameters, returning with register C=0, and a status

code 1n A, unless 1t wishes other extensions to also
resoond to this command.

In carrying out the command the system extension can
make any EXOS calls required, 1ncluding tfturther "scan
extension" calls. It is often useful to make use of the
de fault channel number for doing screen input/output since
it cannot know what other channels are available.

The extension can interpret the command string as a cue
to start itself up as the current applications program.
For example the strings "BASIC", "LISP" and "FORTH" will be
interpreted 1in this way by the appropriate language
cartridges. In order to do this the extension behaves
exactly as 1f 1t had received action code 1 (cold start).

‘j Details of the startup procedure are given below.

\ 4

~AFT10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 - EXOS 2.0 - Kernel Specification Page 36

9.2.3 Action code 3 - Help string

This action code also results from a "scan extensions"
EXOS <call, where the first word of the string was "HELP".
The "HELP" (and any trailing spaces) will have been removed
from the string and then the rest of the string treated
exactly as i1if it was the original string passed to the EXOS

call. The parameters for this action code are thus
identical to those for action code 2 (command string)
described above. 3

If the string 1s null (register B will be 2zero), then
this 1s a gzneral HELP call to all extensions. In this
case the extension should just write 1ts name and version

to the default channel (using channel number 255) and
return with BC and DE preserved. '

If the string 1s not null, and the first word 1is any
of the action code 2 commands recognised by this extension,
then specific help i1information about that command should be
printed to the default channel, and register C returned as
zero, with a status code 1n register A (normally zero). If
desired the rest of the string can be interpreted as
further parameters to control what information 18
displayed.

If the string 1is not null and the first word is not a

valid command for this extension then registers BC and DE
should be returned unchanged.

9.2.4 Action code 4 - EXOS variable

This action code results when a "read/write/toggle EXOS
variable" call was made with a. variable number not-
recognised by the internal ROM (see previous chapter).
It allows system extensions to implement additional EXOS
variables and may be particularly useful for extension ROMs
which also <contain extension devices. The parameters
passed are:

B =20, 1or 2 for READ, WRITE and TOGGLE (ones complement)
E = EXOS variable number
D = New value to be written (only 1f B=1l)

If the wvariable number 1s not recognised ¢then the
extension should return with BC and DE preserved. If the
variable number i1s one supported by this extension then the

appropriate function should be performed and the following
parameters returned:

A = status (normally zero)
- C =20
D = New value of EXOS variable

f‘"t

Vi

U
{

I..-_..;Ll-\

h . @&

]

h . .4

he

A«

A\ . Jd

G

—

b —d

[EPRTRR———

29-Nov-84 EXOS 2.0 - Kernel Specification Page 37

To avoid conflict with the internal EXOS variables, and
any others which may be added 1i1n future versions or

extensions, system extensions should only use EXOS variable

numbers of 128 and above.

9.2.5 Action code 5 - Explain error code

This action code results from a user "explain error
code" function call. The error code 1s passed around all
system extensions to give them a chance to provide an
explanation string. The internal ROM provides explanations
for all error codes which can generated by the EXOS Xxernel
or any of the built in devices, unless a system cxtansion

"returns a string first. -

The error code is passed in register B and if 1t 1s not
recognisad the extension should just return with register
BC preservea, To avoid conflict with the built 1n error
codes, and any new ones in future versions or extensions,

extension ROMs should only use error codes beslow 7Fh for
errors which they generate themselves.

If the error code 1s recognised then a pointer to an
ASClI <@«xnla t1on string (l=2ngth byte first, maximum length
64 characters) should be returned. This can be 1n any
segmant and need not be paged 1n to the Z-80 memory space
when the extension returns. The results returned are:

A - not requir2d, can be any value
B = Segment number containing message
C =20
DE = Address of message string (can be 1in any Z-80 page)
- 9.2.6 Action code 6 - Load module

The details of the Enterprise file module format will be
described in the next chapter. This action code 1s passed
around system extensions when a module header of an
unrecognised type is read in by EXOS, before returning an
arror to the user. It allows a system extension to handle

loading of 1its own module types without requiring any
speclal commands.

The extension 1s passed a pointer to the module header
(16 bytes) which will be 1in the system segment, and also
the channel number to load from:)

B = Channel number to load from
DE = Polnter to 16 byte module header

ET10/10 Cooyriaht (C) 1984 Intelligent Software Limited

!.//

29-Nov-84 ' EXOS 2.0 - Kernel Specification Page 38

The type byte (at DE+1l) should be examined to see 1if d
this is a module type recognised by this extension. If not —
then 1t should return with BC and DE preserved. I1f the -
module type 1s recognlised then the rest of the module
should be -read 1in from the specified channel, possibly
using other parameters from the header, and initialised if
this 1s necessary. Register C should be returned zero, and
a status code in A which should be zero if the loading was
successful and some error code 1f not.

9.2.7 Action'code 7 = RAM allocation

This action code 1s rather special since it is only ever
called at <cold start time, and 1s only received by ROM
extensions, It will only be called once and will always be
the first «call which the EXOS kernel makes ¢to the ROM,
However, as noted above, 1t 1s possible for a ROM to be
entered with action code 2 or 3 before having any RAM
allocated, so 1f the ROM expects to have RAM it must test
for this case by looking for segment zero in 2Z-80 page-l.

If the ROM does not require any RAM allocation then it
should simply 1gnore this action code, returning register C
unchanged. In this case, when future calls are made to
this ROM, Z-80 page-1l and register 1Y will be undefined
since there 1s no RAM area for them to point to.

If the ROM does require RAM to be allocated then it
should return the following results: |

C =0 (To ihdicate‘RAM 1s required)

B RAM type flags. b0 - set for page-2 RAM
bl - set for page-l1l RAM
b2..b7 - not used. zero.
DE = Number of bytes required

The ROM can be allocated one of two types of RAM.
Page-2 RAM 1s allocated in the svstzm s2am2nt and so the
2Xtension can address 1t regardless of what it pnuts in Z-80
page-1. The amount of page-2 RAM 1s limit2d sincm it must
all be 1n one segment and this segment is ucsed for many
other purposes. The other type of RAM allocation is page-1
RAM. This 1s allocated 1n a segment which the zystem marks
as a device allocatzd segment, and can b2 up to very nearly
16k. If this type of allocation is used then more RAM is
available, but a whole_ segment will be taken away from the
user, Several extension RAM areas can be put 1in one
segment, and the same segment can also be used for loading
the code of relocatable or absolute system extensions into
(se> next chapter).

g

Y S S

A -4

29-Nov-84 . EXOS 2.0 - Kernel Specification Page 39

The type of RAM allocation required 1s specified by a
pair of flags passed back in register B. I1f the page-2
flag (bit-0) is set then the RAM will be allocated in the
system segment if possible. I1f the page-1 flag (bit-1l) 1is
set then a separate device segment will be used. If both
flags are set then the system.segment will be used if there

is enough space, otherwise a separate device segment will
be used.

If the RAM allocation is successful then the address and
segment of the RAM area will be saved in the ROM extension
list along with the ROM number. Whenever the ROM 1s called
in future the RAM segment will be put i1n Z-80 page-l and
register IY will point to the RAM area. If the page-l flag
(bit-1 of register B) was clzar, so the RAM was allocated.
in the system segment, then register IY will point to the
RAM area 1n Z2-80 page-2. In all other cases 1Y will point
to the RAM in Z-80 page-l, even if the RAM 1is actually 1in

!_, the system segment (both flags set). If "n" bytes of RAM

were requested then they can be accessed at addresses:
IY+0; IY+1' s o 0 o I“Y+(n-l)

If the RAM allocation failed because there was not
enough RAM available then this extension ROM will be marked
as invalid in the ROM list and will never be entered again.

Note that the call with this action code 1s made very
early on 1n the system 1initialisation, before device
drivers have been linked in or 1initialised. Some EXOS
calls are allowed but any of the device related calls (open

channel, 1link device and so on) are not. Generally care
~should be exercised with EXOS calls made during RAM
allocation. As mentioned before, a "scan extensions" call

1s allow=2d, and 1t will scan all ROM extensions, even those
which have not yet had RAM allocated. This 1s the only
case 1n wnlch an extension ROM can be entered before naving
1ts RAM allocated - care must be taken with this.

9.2.8 Action code 8 - Initialisation

Systaan oxtensions are 1lnitialised 1mmediately atter
aevicrs hav: ke:n 1niclalilsed. This 1s done 1initially at
cold reset time (for ROM extensions), and again whenever an
"EXOS ra2set" call whith the aporoovriate flags set (see
later) 1s made. This occurs when a warm reset happens and
also wn2n a noew wolication prouram takes control. R AM
resident extensions are also 1nitialised 1mmediately after
they hava been loaded. NO parameters are passca to -the
extensions and no results are returned. Register C ({the

action code) should be preserved but all other registers
can be corrupted.

g ADQUIPMENT BV
. INDUSTRICVW/ZG 10-12
FCOToUVS Sl
A0 o\ ZIZIDT
TUL Gona9 - loval

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 - EXOS 2.0 - Kernel Specification Page 40

9.3 Starting a New Applications Program

A system extension may decide to start itself up as the
current applications program as a result of a call with
action <code_ 1 or 2. To do this the following procedure
should be carried out.

1. Do an "EXOS reset" call with the reset flags set to
60h (see 1later). This will de-allocate user RAM,
abolish any opened channels, re-link and re-initialise
all built in and extension devices, abolish any user
devices and re-initialise extension ROMs (1including
the one making the call). It will return with
interrupts disabled. '

2. Set up a user stack somewhere 1in the page zero
segment, since no other RAM is available, and then re-
enable interrupts.

3. Allocate any additional RAM segments which are needed,
and open any default channels.

4. Set up a warm reset address for when the reset button
1s press=d. This should be done even 1f the program
does a complete restart for a warm reset, to ensure
that any RAM resident system extensions will remain
resident. |

5. Set up the default channel number to th2 program's
normal screen I1/0 channel (usually an editor channel),
to allow system extensions to print thelr help
messages. '

o

After doing this, 1t 1s 1in full control as the current

applications program and can make any EXOS calls.

h.&

~~di

| \—— L-—J .»—-—-o

A _é

10,

29-Nov-84 . EXOS 2.0 - Kernel Specification Page 41l

Enterprise File Format and EXOS Loading Functions

10.1 Enterprise File Format

All files which are to be loaded by EXOS should follow
the format described here. ~ It 1s designed so that the
operator of a program such as BASIC can simply give a
command such as "LOAD" without knowing what he is going to
load. It could be a BASIC internal format program, or it
could be a new device driver in relocatable format, to name
but two.

A file consits of a series of one or more modules. Each
module starts with a 16 byte module header which defines
what type of data 1s to follow 1in the rest of the module.
A file can contain several modules so that, for example a
BASIC program can be loaded at the same time as a new
device driver which the program uses, simply by having them
as two modules 1n a single file,

' The header starts with a null byte (zero) to indicate

that it is an Enterprise module header, rather than for
example an ASCII text file. Any files which do not start
will a null will be referred to as ASCII files although
they may be any other sort of data.

Following the null is a type byte, which specifies what
type of data the rest of the module contains. The next 13
bytes are different for each type and contain various other
parameters such as size and entry point addresses. The

very last byte of the header is a version number and should
always be zero for current versions.

10.1.1 Module Header Types
The defined types of module are:

0 - S$SASCII ASCII File
1l - Not used
28 - SSREL User relocatable module
34 - SSSXBAS Multiple BASIC program
¥ - SSBAS Single BASIC program

g - SSAPP New applications program
7 - S$SXABS Absolute system extension

78 - SSXREL Relocatable system extension
9 - SSEDIT Editor document file

giﬂ - "SSLISP Lisp memory image file
1ol - SSEOF End of file module
12...31 - Reserved for future use by IS/Enterorise

Type zero 1s recognised as an ASCII file to recuce tho
possibility of an ASCII fila being mistaken tor an
Enterprise module header. This will be exnlaincd 1n tne
section below on the EXOS loading functions.

F”T]’)/] 0 S AR T (CY 1984 Tnralliann+ CAfFrwara T imy +aA

29-Nov-84 - EXOS 2.0 - Kernel Specification Pagé 42

'
\
When a module has been loaded another module may follow, .n
so tie system will attemnt to load another header. It 1is f" J
therefore necessary to end cach fi1le with a module header b

with the "end of file" tyor (t:n> 11) to 1indicate that
there 1s no more to load.

Header types 4, 5, 9 and 10 are specific to particular
languages or devices and are describ»d 19 the documentation
for those programs (IS-BASIC, 1S-LISPF and tho EXOS editor). ¥
They will not be mentioned further here. - b

Of the remaining types, numbers 6, 7, and 8 are handled
entirely by the EXOS kernel, and type 3 is handled mostly
by the Kernel but with some 1nteraction by the applications
nrogram. All of thes=z tyoes will be described 1in the
iollowing sections. '

10.2 Loading Enterprise Format Files | ' b

When the user wants to load a file, he should ensure
that the channel to load from 1s open and then make a "load
module" EXOS «call. This will read one byte from the
channel and immediately return a .ASCII error, with the
character code in register B, if the byte is non-zero.

If the first byte 1s zero then another byte (the type
byte 1s read). If this 1s zero then it is an ASCII file so
a J.ASCII error 1s returned, with the type byte (zero) in
register B. This ensures that 1f an ASCII file starts with

a seriles of nulls then it will be recognised as an ASCII
file and only the first null will be lost.

If the type byte 1s non zero then it 1is saved and
another 14 bytes read in to complete the module header. 1If
it 1s an end of file header (type 1l1) then a .NOMOD error
will be returned. This should be trapped by the user
program since 1t 1s not really an error, 1t is the normal
terminating condition.

-~y vy y '

o

-y

If the module 1s a type which 1s handled internally by EXOS
(type 6, 7 or 8) then the rest of the module will be loaded
in and 1nitialised (details are given 1n the following
sections). If it 1s not a type handled by EXOS then the
module header will be passed around any system extensions [‘
to give them a chance to load it if they recognise the

type. If the module is loaded in either of these ways then
a zero status code will be returned to the user.

1

* ¥

Assuming that the module was not loaded by EXOS or by a
system extension then a .ITYPE error will be returned to
the user, and the module header copied into a buffer passed
by the user. The user can then look at the type byte and
load the rest of the module if he recognises it.

.

S

| N

N .-

|

h L-—J l---‘

VY W SV S W

, S

29-Nov-84 | EXOS 2.0 - Kernel Specification Page 43

When a module has been loaded, by the user, by EXOS, or
by a system extension, another "load module" call should be
made to load in the next module of the file. This will
continue until a .NOMOD error is received from EXOS, which
is the normal termination, or a fatal error occurs, elther
from the loading channel or an invalid module, which will
result 1n an error response.

10.3 Relocatable Data Format

EXOS supports the loading of relocatable modules using a

simple bit stream relocatable data format. There are two
types of relocatable modules, user relocatable modules and
relocatable system extensions. These module types and how

they are loaded will be described in later sections, this

section Jjust describes the relocatable bit stream format
1tself.

The data of a relocatable module 1is a bit stream in the
sense that individual data fields are’' a variable number of
bits and are not aligned on byte boundaries. The bytes of
the data are 1nterpreted most significant bit first, so the
first bit of the bit stream is bit-7 of the first byte.

A complete relocatable module consists of a sequence of
items which are defined by sequences of bits in the bit
stream, The following diagram shows the decoding of the
bit stream into the various items. The 1tems themselves
are explained afterwards.

0 -> 8-bits load absolute byte

1 00 -> l6-bits 1load relocatable word

. 01 0 0 -> 2-bits set run time page

e« oo o 1 => restore run time page

e oo 1 -> 1l6-bits set new location counter

. 10 -> end of module

. 11 -> l1llegal - for future expansion

10.3.1 Location Counter and Run Time Page

When the relocatable loader is called it is passed a
starting address which can be in any Z-80 page. It loads
the data into whatever segment was in that page, and must
not cross a segment boundary. It keeps a location counter
which 1s the current address it is storing bytes at and is
also wused for loading relocatable words. This location

counter 1s initially set to the start address passed to the
loader.

If a "set new location counter" item is found then the
following 16 bits form an offset which is added to the

current lgcation counter. Adding this offset must not move
the location counter into a new page.

ET10/10 Conyright (C) 1984 Intelligent Software Limited

Lﬂ;

2%-Nov-84 ' EXOS 2.0 - Kernel Specification Page 44

It 1s often useful to have sections of code loaded into
a segment which will be accessed 1in different Z-80 pages,
since the segment can be paged 1nto different pages. This
l1s particularly true when crzating user device drivers
which may be loaded 1nto page-0, but when executed will run
in page-3. It 1s to provide this facility that the "set
run time page" and "restore run time ©page" 1items are
provided.

When a "set run time page" item 1s found, the following
two bits define a new page. The top two bits of the
location counter will be set to this new page setting.
This will not affect where bytes are actually loaded since
the page 1s irrelevant, as thzy are always loaded into a
single segment. However it will affect the values produced
for relocatable words which are loaded. This means that

code can be loaded 1n one page to run in another.

The "restore run time page" item will set the page of
the 1location counter back to what it was when the loader

was called, regardless of any new pages which have been set
since then.

10.3.2 Relocatable Words and Absolute Bytes

When a "load absolute byte" 1item 1s found, the following
8 bits are stored at the current location counter address
and the location counter incremented by one. When a "load

relocatable word" item 1s found, the following 16 bits are
read and the current location counter added on to them.

The resulting word is stored low byte first at the location

counter address and the location counter is incremented by
two.

10.3.3 End of Module Item

When an "end of module" 1tem 1s found it will terminate
the relocatable 1loader. Any remaining bits in the 1last

byte wi1ill be padded out with zeros and the following byte
wi1ill be the start of the next module header.

10.4 User Relocatable Moduies

User relocatable modules are loaded into user RAM and
are regarded as being part of the current applications
program once loaded. It 1s the responsibility of the user
to organise allocation of RAM for them to be loaded 1into.
They are useful for providing user device drivers, indeed
the 1nterlace video driver which 1s provided with the

Enterprise computer 1s loaded as a user relocatable module.

h o A .o

L .

N

.- d Lo L. L _ o

| U

S S—

L-""-r"' "'HJ'

29-Nov-84 . EXOS 2.0 - Kernel Specification Page 45

The module header for a user relocatable module 1s:

0 - zero
l - module type (2)
2.3 = Size of code once loaded

4..5 - Initialisation offset (OFFFFh if none)
6-.15 - 2ero

When an EXOS "load module" function call finds a header
of this type, it will not recognise it but will just return

a .ITYPE error to the user. The user then looks at the
type and sees that 1t 1s a user relocatable module. The
size fileld in the header defines the complete size of the
module once 1t 1s loaded. The user must find an area of

RAM of this size, 1n one segment which he can allocate
permanently, and pass thilis address to a "load relocatable
module" EXOS call, along with the channel number.

EXOS will load the module into the RAM and then return
to the user with a zero status code if there was no error.
If the 1initialisation offset is not' OFFFFh then the wuser
should call this address (the offset is from the 1initial
loading address). This routine will do any initialisation
of the module which i1s required. For example 1in the case

of the interlace video driver, the initialisation will link
1t 1nto EXOS as a user device.

10.5 Relocatable and Absolute System Extensions

Relocatable and absolute system extensions are loaded
automatically by EXOS when the appropriate module header is
found. They are loaded 1nto segments which EXOS marks as
allocated to devices and will therefore never be freed.
Once loaded they function exactly like ROM based system
extansions, with a single entry point which 1is nvassed
action codes. Operation of the extensions once loaded was

described 1n a previous chapter, this section just covers
the actual loading and header format.,

EXOS maintains a list of segments allocated in this way.
They can be used for loading relocatable and absolute
extensions, and also for allocating RAM to ROM exten-ions
at cold start time. Absolute extensions always go at the
bottom of a segment and so there can only be one per
segment, Relccatable extensions and RAM areas for ROM
extenslions are allocated from the top of a segment

downwards and there can be as many of these in a segment as
will fit,

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 ' EXOS 2.0 - Kernel Specification Page 46

The module header format for the two types is the same
except for the type byte: o
0 - zero |
1l -- module type (6 for absolute, 7 for relocatable)
2..3 = Size of code once loaded (< 1l6k)
4..15 - zero

EXOS will first allocate enough RAM to 1load the
extension 1nto, which may require allocation of a new
segment or may be able to make use of a space in an earlier
segment. The data will then be loaded into the segment.
In the case o0f an absolute extension the data will be
loaded with the first byte going at address 0CO0Ah, which
wlll be the entry point of the extension. For relocatable
extensions the code will be loaded anywhere in the segment
(addressed 1n Z-80 page-3) and the entry point will be the
very first byte loaded.

If an error occurs in loading than the extension will be
lost and the RAM for it will be de-allocated which may
involve freelng a segment if it was a newly allocated one.
If no error occurs then the new extension will be linked on
to the start of the list of system extensions and then
initialised, as described 1n the chapter on system

extensions. Control will then return to the user in the -
usual way. , , |

10.6 New Applications Programs

The "new applications program" module type 1is loaded
automatically by EXOS when the header is found. It can be =
used to load programs of up to 47.75k. The program it
loads will automatically be started up as the new
applications program, 1losing the previous one. It 1is
intended for loading programs such as machine code games
from cassette although it will have other uses.

The module header format 1is:

0 - zero
1l = module type (5)

2..3 = Size of program in bytes (low byte first)

EXOS will look at the size of the program and work out
1f enough user RAM can be allocated to 1load it into,
allowing for a shared segment but without closing any
channels. If there is not enough then a .NORAM error 1is

returned, otherwise EXOS will commit itself to loading the /™
file. |

‘-—-—u--‘

- L Leug Lo d L4 8 L. h.ada M. @

e o

29-Nov-84 .~ EXOS 2.0 - Kernel Specification Page 47

Having reached this stage 1t will allocate the necessary
user RAM segments for the program and from this point on 1t
cannot return to the current applications program since 1t
will have corrupted the RAM 1t was using. If an error
occurs from here on then 1t will display an error message
on the default channel and then scan all extensions with
the c¢cold start action code. This 1s the only time that
extenslons can recelve a cold start action cold other than
at a genulne cold start. |

OCnce th> regquired segments have been allocated the new
orogram wlll be read 1n from the channel and stored as
absolute bytes starting at address 100h. When the whole
program has been loaded, EXOS will simulate a warm reset to
the start ot the orogcam at 100h. This warm reset will be
done with the resz2t flags set to 20h (see later) which will
completely reset the I/0 system, without disturbing user
RAM. The new applications program will have tc go through
the normal startup procedure (described earlier), except
that 1t needn't do another EXO0OS call.

Since user segments may have had to be allocated to load

the program 1in, the program may be occupying a shared
segment, If this 1s the case then the user boundary will
have been set to just above the end of the program to allow
as much RAM as possible for opening channels etc.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

L/

29-Nov-84 - EXOS 2.0 - Kernel Specification Page 48

11. EXOS Function Calls in Detail

This chapter contains details of all the EXOS function &
calls. Many of them have been described earlier 1n general
terms. This section concentrates on details such as
register usage and error codes, and describes the function
calls from the point of view of the program making the

call.

Parameters are passed to EXOS calls in registers A, BC
and DE, and results are passed back in the same registers.
Register A returns a status code which 1s zero i1f the call
was successful and a non-zero error code otherwise. All
other registers (HL, IX, 1Y, AF', BC', DE', HL') are
preserved by all EXOS calls, and also the user's paging 1s
not disturbed. EXOS calls can be made from any address 1in
any 2Z-80 page, and the user's stack can be in any of the

four pages.

ll.1 Device Name and Filename String Syntax

f The "open channel" and "create channel" function calls

take a string parameter. This string defines which device
driver the channel 1s being opened to, and also specifies a
unit number and filename. The syntax of the string is: -

[[device-name] [["-="] unit-number] ":"] [file-name]

where [] denotes an optional part and "" delimits
literal characters.

The device name can be up to 28 characters and must be
entirely letters, which will be uppercased before using so
case 1s not significant. If 1t 1s not present then EXOS
wlill wuse a default device name which can be set with a
"default device name" EXOS call (code 19). If the unit
number 1S also absent (seez below) then the default unit
number, which can also be set with this call, will be used.

!

1

The unit-number, 1f present, can be seperated from the
device name with a single "-" (minus) character if desired
or 1t can 1mmediately follow it. The unit number consists
of a series of decimal digits which will be converted into
a one byte value by EXOS. If the device name is specified
with no unit number, then a default unit number of zero is
used. - -

Th2 optional filename consits of up to 28 characters

which can 1nclude letters, digits and the special
characters "\/-_." (not including the quotes). letters
wilill be uppercasa2d before the string is us-~>d. Tf there is 7

no filename then it will just b2 taken as th> null string.

b - “-e—a he o

‘-—-4.--‘

t.--—--‘ L-r 5 k-uu-‘i k -— D

A s

-

- —d

29-Nov-84 .~ EXOS 2.0 - Kernel Specification Page 49

l1.2 Function 0 - System Reset
Parameters: C = Reset type flags
Results: A = Status (always zero but flags .>t set

-u--‘-r'#

The filename and unit number will be passed through to
the device driver for interpretation. However 1if the
device driver has the DD UNIT COUNT field in 1its device

descriptor set then some manipulation of the wunit number
wilill occur.

If the DD UNIT COUNT field is set to "N" then this means
that the device driver only accepts unit numbers in the
range [0 ... N-1l]. If the unit number 1is greater than this
then it will be reduced by "N" and the search of the device
chain will continue, When another device of the same name
is found the process will be repeated and if it 1is now
within range then the device will be called with the
reduced unit number., In thlis way several devices wlith the
same name can be supported, with the distincion being by
unit number, This 1s not ucsed by any built in devices but
could be used by add on disk units.

Interrupts disabled

This call causes a reset of EXOS. The flags pvassed 1in
raglster C control exactly what the RESET does, as below.

bd ... D3 must be zero

b4 - Sct => Forcibly d=z-allocate all channel RAM, and
re-1ntulalis: all devices. User devices
wlll be retained.

2 b5 - Set => As Dbit-4 Dbut also re-link in all built in

and extension d:2vices, and re-initialise
system extensions. User d=a2vices will Dbe
lost. Device segments are not de-allocated.

L] b6 - Set => De-allocate all usefRAM segments.

& b7 - Set => Cold reset. This 1s eguilvalent to

switching the machine off and on again. All
RAM data 1s lost.

Note that the status register 1is not set to be
consistent with the status code (which 1is always zero
anyway) and registers BC', DE' and HL' are corrupted by

this EXOS call. Also a Slde erfect of the call 1s that
interrupts are disabled.

An automatic RESET call (with flags set to 20h) is done

when a warm reset occurs. Also a RESET (with flags set to

60h) must be done by a system extension when it takes

control as a new current applications program.

ET10/10 Coovriaght (C) 1984 Intelliadent Software I,imi+ad

29-Nov-84 ' EXOS 2.0 - Kernel Specification Page 50

‘ /-ﬂ
l1l.3 Function 1 - Open channel
E Parameters: A channel number (must not be 255)
DE pointer to device/filename string

Results: A status

The format of the filename string was specified above.
The filename and unit number are passed to the device
driver for 1nterpretation and many devices will just ignore
them. If the device 1s one which supports filenames then
1t will return an error code if the file specified does not
already exist. Some devices require options to be selected
(by special function calls) before the channel can be used.
Also some devices require parameters to be specified by
setting EXOS variables before a channel can be opened.

The unit number 1s ignored by all built 1in devices
except the network driver,. If a device name with no unit
number 1s specified then a default of zero is used which

devices could translate into their own internal default if
desired.

For the open channel function to be successfully
completed, the device must allocate itself a channel buffer
before 1t returns and an error may be returned if there 1is /.
insufficient RAM available. |

1l1.4 Function 2 - Create channel

Parameters: A chann=2l numb2r (must not be 255)
DE pointer to davice/filename string e
Results: A status

N

The create function 1s identical to th~r onen function
cxcept that 1f the device suvports filenamrs, thon the file
will be created if it doesn't exist, and an eorror code
returned 1f it does. It 1s identical to OPEN CHANNEL for
2111 built 1n devices except the cassette driver.

11.5 Function 3 - Close channel

Parameters: A channel number (must not be 255)
Results: A status | .

The close function flushes any buffers and de-allocates
any RAM used by the channel. Further reference to this |
channel number will result in an error. The device's entry r
point 1s called before the channel RAM is de-allocated.

ho.—a

h -

 N—

l-——-—l-‘ L———-A‘ sl L-J L—-—-J

4

A

Lo A 9

(WO

Lﬁ-#'t“‘
Fi

- = o ——— = "

29-Nov-84 EXOS 2.0 - Kernel Specification Page 51

ll1.6 Function 4 - Lustroy channel

Parameters: A channel number (must not be 255)
Results: A status

The destroy function is identical to the close function
except that on a file handling device the file 1s deleted.
It is identical for all built in devices.

11.7 Function 5 - Read character

Parameters: A channel number
Results: A status
B character

The read character call allows single characters to be
read from a channel without the explicit use of a buffer.
If no character 1s ready then 1t waits until one 1s ready.
This call 1s passed directly through to the device driver.

i

l11.8 Function 6 - Read block

Parameters: A channel number
BC byte count
DE buffer address
Results: A status
BC bytes left to read
DE modified buffer address

The read block function reads a variable sized block
from a channel. The block may be from 0 to 65535 bytes 1in
length and can cross segment boundaries. Note that the

- byte count returned i1n BC 1s valid even if the status code
1S negative, although not if it is an error such as non-
exlstent channel. This allows a partially successtul block
write to be re-tried from the first character which railed.
This call 1s passed directly through to the device driver.

11.9 Function 7 - Write character

Parameters: A channel number
B character

Results: A status

The write character function allows single characters to

be written to a chunnel. This call 1is passed directly to
the device driver.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

VA

29-Nov-54 - EXOS 2.0 - Kernel Specification Page 52

11.10 Function 8 - Write block

Parameters: A channel number £
BC byte count
DE buffer address
- Results? A status
BC bytes left to write
DE modified buffer address

The block write function allows a variable sized block
to be written to a channel and is similar to block read.
The byte count returned in BC is valid even 1f the status
code 1is negative. This call is passed directly through to
the device driver

11.11 Function 9 - Channel read status

Parameters: A channel number
Results: A status
C O00h if character is ready to be read
FFh 1f at end of file
Olh otherwise.

The read channel status function call is used to allow
polling of a device such as thz keyboard without making the

system wait until a character 1s ready. This call 1is
passed directly through to the device driver,

11.12 Function 10 - Set and Read Channel Status

Parameters: A channel number

C Write flags 4
DE pointer to parameter block (16 bytes)
Results: A status

C Read flags
This function 1is used to provide random access
facilities and file protection on file devices such as disk
or a RAM driver. The format of the parameter block 1is:

bytes: 0...3 - File pointer value (32 bits)

4...7 - File size (32 bits)
8 - Protection byte (yet to be defined)
9...15 - Zero. (reserved for future expansion)

- '_‘Iv-l-—rﬁ

$.2 L _s k_ o

. il

t

QI

L4 Lo

-—--l‘

294Nov-84 EXOS 2.0 - Kernel Specification Page 53

The assignment of bits in the read and write flags byte
is as below. The specified action is taken if the bit 1s

set.
WRITE FLAGS ~ READ FLAGS
b0 Set new pointer value File pointer is valid
bl not used (0) File size 1is valid
b2 Set new protection byte Protection byte is valid
b3...b7 not used (0) always O

This allows the file pointer and/or the protection byte
to be set independently, or just to be read. Not all
devices need to support this function, indeed none of the
built in devices support 1it. If a device doesn't support
it then it should return a .NOFN error code. -

11.13 Function 11 - Special function

Parameters: A channel numbar’
B sub-function number
C unspecified parameter
DE unspecified parameter
Results: A status
C unspecified parameter
DE unspeclfiled parameter

This function call allows device specific functions to
be performed on a channel. If it 1s not supported by a
device then a .ISPEC error will be returned.

The sub-function number specified 1in register B
determines which special function 1s required. Sub-
function numbers should be different for all devices,
unless equivalent functions are implemented. The special

functions for built 1n devices are (see device driver
specifications for details):

@@DISP = 1 VIDEO - Display page

@@SIZE = 2 VIDEO - Return page size and mode
QERADDR = 3 VIDEO - Return video page address
@@FONT = 4 VIDEO - Reset character font
Q@@FKEY = 8 KEYBOARD - Program function key
@@JoY = 9 KEYBOARD - Read joysick directly
@QRFLSH = 16 NETWORK - Flush output buffer
@ACLR = 17 NETWORK - Clear input and output buffers
QA@MARG = 24 EDITOR - Set margins

@@CHLD = 25 EDITOR - Load a document

@@CHSV = 26 EDITOR - Save a document

ET10/10 Conyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 54§

-

All other sub-function codes from =zero ‘{o 63 are)
reserved for use by IS/Enterpris~. Cocoe of 64 and above 7 -
can be used by user devices.

11.14 Function 16 - Read, Write or Toggle EXOS Variable

0 To read value

1l To write value

2 To toggle value

EXOS variable number (0...255)

New value to be written (only for writ
Status

New value of EXOS variable

Parameters: B

C
D
Results: A

L | N | B | AN | I {

D

This function allows EXOS variables to be set or 1

inspected. These variables control various functions of
the system and specific devices. Note that the value is
returned 1n D even for write and toggle. A list of

currently defined EXOS variables was given earlier.
System extensions can implement additional EXOS variables.

11.15 Function 17 - Capture channel

Parameters: A - Main channel number

C - Secondary channel number (0FFh to
cancel capture)
Results: A - Status

The capture channel function causes subsequent read
function calls (read character, read block and read status) 7~
to the main channel, to read. data instead from the)
secondary channel. When the function call is made, the
maln channel must exist but no check 1is made on the
secondary channel number existing.

The capture applies to all subsequent input from the
main channel number until either the secondary channel is
closed or gives any error (such as end of file) or the main
channel 1s captured from somewhere else. The effect of the
capture can be cancelled by giving a secondary channel
number of OFFh which is not a valid channel number.

29-Nov=-84 EXOS 2.0'- Kernel Specification Page 55

11.16 Function 18 - Re-direct channel

Parameters: A - Main channel number .
S C - Secondary channel number (0FFh to
cancel redirection)
Results: A - Status

| The re-direct function causes subsequent output sent to

the main channel with write <character or write block
| function calls, to be sent to the secondary channel
instead. The redirection lasts until the secondary channel
is closed or returns an error, or the main channel 1s
redirected somewhere else. A sacondary channel number of
i OFFh will cancel any redirection of the main channel.

‘ 11.17 Function 19 - Set default device name
’

. Parameters: DE - device name pointer (no colon)
| C - device type 0 = non file handling
l = file handling

| S|

Results: A - status
The set default device name function specifies a device
name and (optionally) a unit number which will be used 1in
subsequent "open channel" or ‘"create <channel" function

- -

1 calls if no device name 1is specified by the user.
4 J Initially the default name will be "TAPE-1" but will be set
e to "DISK-1l" if a disk device 1s linked 1n. The specified
1 | device name and unit number are checked for legality (1ie.
* no invalid characters) but not for existence in the device
- chain.
) If a string with only a unit number, such as "45" |is
- specified then this will set a new unit number but the
default name will be un-changed. If device name but no

unit number is given, then the default unit number will Dbe

The "device type" given in register C 1s simply copled
to the "device type" EXOS variable. This will be zero 1n
the default machine because the default device 1s "TAPE"

R

. which 1is not a file handling device. ~"If a disk unit 1s
! connected then the device type will be set to 1. This
B variable 1is not currently used by EXOS but can be of some

use to applications programs.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

e

SG

-

29-Nov-84 EXOS 2.0 - Kernel Specification Page 56

'11.18 Function 20 - Return system status

Parameters: DE -> Parameter block, 8 bytes.
Results: A Status code, always 0.
B Version number (currently 20h)
- DE - unchanged

This function returns the version number of the system
and various parameters which describe the RAM segment

usage 1n the system. The parameters returned are, 1in
order:

0. Shared segment number (0 i1f no shared segment)

l. Number of free segments.

2. Number of segments allocated to user, excluding page-
zero segment and shared segment (if there is one).

3. Number of segments allocated to devices.

4. Number of segments allocated to the system, including
the shared segment (1f there is one).

5. Total number of working RAM segments.

6. Total number of non-working RAM segments.

7. **¥* Not currently used ***

11.19 Function 21 - Link Device

Parameters: DE - Pointer to RAM in 2Z-80 space

containing device descriptor.

BC - Amount of device RAM required.
Results: A - status

The 1link device function causes the device descriptor
pointed to by DE to be linked into the descriptor chain.
The descriptor will be put at the start of the chain and

~any existing device with the same name will be disabled.
DE must point at the TYPE field of the descriptor and the
descriptor must not cross a segment boundary. Once linked
in the user must ensure that the device code and descriptor
are not corrupted until a RESET function call with bit-5
set (to un-link user devices) has been made.

The amount of RAM requested will be allocated 1in the
system segment. When the device is first initialised, this
RAM area wi1ill be pointed to by IX and the device must

remember this address since it will never be told it again,
even when 1t 1s re-initialised.

ET10/10 Copyright (C) 1984 Intelliacent Software Limitad

‘ 29-Nov-84 BXO0S 2.0 - Kernel Specification Page 57

=) 3 :;f
4 11.20 Function 22 - Read EXOS Boundary *Q?Ei gy !
1 Parameters: none
J R Results: A - status (Always zero)
C = Shared segment numbcr. 0 1f there
| 1s no shared segment.
1 . DE - EXOS boundary 1in shared segment
« (0..3FFFh) '
\ | The read EXOS boundary function returns . the offset
4 within the currently shared segment, of the lowest byte
which the system 1s using. If there 1s no shared segment
‘ then DE will point to where the EXOS boundary would be if a
j shared segment were allocated.
<) 11.21 Function 23 - Set User Boundéry
Parameters: DE - Offset of new USER boundary.
(0...3FFFh)
Results: A - Status ;
1 The set user boundary function allows the user to move
- the USER boundary within the currently shared segment. It
there 1s no shared segment then this function 1is not
3 allowed. The boundary may not be set higher than the
y ‘) current EXOS boundary.
_] 11.22 PFunction 24 - Allocate Segment
1 Parameters: none
j Results: A - status
C = Segment number
. DE - EXOS boundary within segment
.
d The allocate segment function allows the user to obtain
another 16K segment for his use. If a free segment 1is
1 avalla?le then 1t will be allocated and status returned
) zero with segment number in C and DE will be 4000h.
. If there are no free segments but the wuser can be
1 allocated a shared segment, then the segment number will be
B

returned in C and DE will be the initial EXOS boundary. In

this case a .SHARE error will be returned. The user
boundary 1s initially set equal to the EXOS boundary.

—

If there are no free segments and there is already a
: shared segment then a .NOSEG error will be returned.

If this function call is made by a device driver then
1 the segment will be marked as allocated to a device and a
}g,) shared segment cannot be allocated.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 58

11.23 Function 25 - Free segment

Parameters: C - Segment number o
Results: A - status

The free segment function allows the user to free a 16k
segment of RAM. The segment must be currently allocated to
the user or be shared. The page zero segment cannot be
freed as 1t was never allocated explicitly with an

"allocate segment" call.

If this function call 1s made by a device driver then it
must be to free a segment which was allocated to a device
driver with an "allocate segment" call. There 1s no
checking of which device 1s freeing the segment - devices
are supposed to be well behaved.

11.24 Function 26 - Scan System Extensions

Pointer to command string
Status

Parameters: DE
Results: A

This function causes the string to be passed around all
system extensions after some processing, with action code 2
(or 3 1f the first word of the string is * "HELP"). This

allows services to be carried out by system extensions and
also allows transfer to a new applications program.
11.25 PFunction 27 = Allocate Channel Buffer
Parameters: DE - Amount of buffer which must be in ~

one segment -

BC - Amount of buffer which needn't be) ‘
in one segment (only needed for *
video devices)

Results: A - status
IX -> Points newly allocated buffer
PAGE-1 contains the new buffer segment

The allocate channel buffer function is provided only :
for devices and may not be called by the applications
program. It 1s used to provide a channel with a RAM buffer
when it 1is opened. The "multi segment size" passed 1in
register BC 1is ignored for non-video devices since they
must have their channel buffer all in one segment. So, for
non-video devices BC need not be loaded before making the

call.

ET10/10 Coovriaht (C) 1984 Tntelliocent Sonftware Limited /

‘-‘-_‘_"

.4 .4

—_—

W

. gl g il

hed Ao

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 59

11.26 Function 28 - Explain Error Code

Parameters: A .- Error code which needs explaining
DE - Pointer to string buffer (64 bytes)
Results: A=20

DE - Unchangsad

This function allows an EXOS error code to be converted
into a short text message. System extensions are glven a
chance of doing the translation. All error codes generated
by the EXOS kernel and the built in devices are explalned

by the internal ROM. If the string returned 1s of zero
length then it is an error code which no one was willing to
explain.

11.27 Function 29 - Load Module

Paramete1 s D& -> Buffer for module hzadzar (l6 bytes)
B = Channel number to load from
Results: A - Status ;
DE = Unchanged
B - If A=.ASCII - lst character of file

If A=.ITYPE - Module type
Else un-defined

This function call was explained in the section on

loading Enterprise module format files. It will 1load a
module header and then either load the module 1itself, or
pass it to the system extensions for loading. If the

system extensions don't want it then it will be returned to
the user in his buffer (pointed to by DE), for him to load.

If a module is loaded OK by EXOS or a system extension
then a zero status code 1s returned. In this case, or 1f
the module is successfully loaded by the user, the "load
module" function call should be repeated to load the next
module. This should continue until a .NOMOD error 1s

returned which indicates that an "end 1f file header" was
read, or until a fatal error occurs.

If the first byte 1s not zero, or the type byte 1s zero
then the file is not an Enterprise format file and a .ASCII
error i1s returned with the first character 1in B. The user
can then do what he wants with the ASCII data, but should
not attempt to load another module from this file.

I

= P,

H' g
Q2

29-Nov-84 _ EXOS 2.0 - Kernel Specification Page 60

11.28 Function 30 - Load Relocatable Module

Parameters: B = Channel number to load from N
DE = Starting address to load at X
Results: A = Status
i DE = Unchanged

This function call <can be used by the user to 1load
user relocatable modules, with header type 2, which will be
rejected by the "load module" call above.

The user must find the correct sized chunk of RAM to
load the module i1into (from the size in the header). If the
function call returns a zero error code then the user
should call the 1nitialisation entry point of the code
loaded (1f there 1s one) and should then call "load module”
again to get the next module header. This is explained in
more detail in an earlier chapter.

11.29 Function 31 - Set Time

Parameters: C = Hours 0...23 (BCD)
D = Minutes 0...59 (BCD)
E = Seconds 0...59 (BCD)
Results: A = Status

This function sets the internal system clock. The 7
parameters are checked for legality and a .ITIME error
returned 1f they are illegal.

11.30 Function 32 - Read Time
Parameters: none % ~
Results A = Status B -
C = Hours 0...23 (BCD) - E
D = Minutes 0...59 (BCD)
E = Seconds 0...59 (BCD)

This function reads the current value of the system
clock. This clock 1s incremented every second, using the
Enterprise's 1lHz interrupt. When 1t reaches midnight the
date will automatically be incremented (sec below).

r

)

Ahva b .o

L..ﬁ...l L......i S

A4

L

(W

g

29-Nov-84 EXOS 2.0 - Kernel Specification Page 61

11.31 Function 33 - Set Date

Parameters: C = Year 0...99 (BCD)
D = Month le...12 (BCD)
E = Day l...31 (BCD)
Results: A = Status | |

This function sets the internal system date. The
parameters are checked fully for legality, 1including the
number of days in each month and leap years. The year 1s
origined at 1980 so a year value of 4 actually represents
1984. This allows the date to go well into the future
(obsolescence built out !).

11.32 Function 34 - Read Date

Parameters: none

Results: A = Status
C = Year 0...99 (BCD)
D = Month l...12 (BCD)
E = Day l...31 (BCD)

This function reads the current value of the internal
system calender. This can be set by the user and will
increment automatically when tha system clock reaches
midnight, coping correctly with the number of days 1n 2ach
month i1ncluding leap years.

++++++++++ END OF DOCUMENT ++++++++++

ET10/10 Copyright (C) 1984 Intelligent Software Limited

Ed

‘h\’
4

	ET10-10_EXOS_20_Kernel_Specification~01
	ET10-10_EXOS_20_Kernel_Specification~02
	ET10-10_EXOS_20_Kernel_Specification~03
	ET10-10_EXOS_20_Kernel_Specification~04
	ET10-10_EXOS_20_Kernel_Specification~05
	ET10-10_EXOS_20_Kernel_Specification~06
	ET10-10_EXOS_20_Kernel_Specification~07
	ET10-10_EXOS_20_Kernel_Specification~08
	ET10-10_EXOS_20_Kernel_Specification~09
	ET10-10_EXOS_20_Kernel_Specification~10
	ET10-10_EXOS_20_Kernel_Specification~11
	ET10-10_EXOS_20_Kernel_Specification~12
	ET10-10_EXOS_20_Kernel_Specification~13
	ET10-10_EXOS_20_Kernel_Specification~14
	ET10-10_EXOS_20_Kernel_Specification~15
	ET10-10_EXOS_20_Kernel_Specification~16
	ET10-10_EXOS_20_Kernel_Specification~17
	ET10-10_EXOS_20_Kernel_Specification~18
	ET10-10_EXOS_20_Kernel_Specification~19
	ET10-10_EXOS_20_Kernel_Specification~20
	ET10-10_EXOS_20_Kernel_Specification~21
	ET10-10_EXOS_20_Kernel_Specification~22
	ET10-10_EXOS_20_Kernel_Specification~23
	ET10-10_EXOS_20_Kernel_Specification~24
	ET10-10_EXOS_20_Kernel_Specification~25
	ET10-10_EXOS_20_Kernel_Specification~26
	ET10-10_EXOS_20_Kernel_Specification~27
	ET10-10_EXOS_20_Kernel_Specification~28
	ET10-10_EXOS_20_Kernel_Specification~29
	ET10-10_EXOS_20_Kernel_Specification~30
	ET10-10_EXOS_20_Kernel_Specification~31
	ET10-10_EXOS_20_Kernel_Specification~32
	ET10-10_EXOS_20_Kernel_Specification~33
	ET10-10_EXOS_20_Kernel_Specification~34
	ET10-10_EXOS_20_Kernel_Specification~35
	ET10-10_EXOS_20_Kernel_Specification~36
	ET10-10_EXOS_20_Kernel_Specification~37
	ET10-10_EXOS_20_Kernel_Specification~38
	ET10-10_EXOS_20_Kernel_Specification~39
	ET10-10_EXOS_20_Kernel_Specification~40
	ET10-10_EXOS_20_Kernel_Specification~41
	ET10-10_EXOS_20_Kernel_Specification~42
	ET10-10_EXOS_20_Kernel_Specification~43
	ET10-10_EXOS_20_Kernel_Specification~44
	ET10-10_EXOS_20_Kernel_Specification~45
	ET10-10_EXOS_20_Kernel_Specification~46
	ET10-10_EXOS_20_Kernel_Specification~47
	ET10-10_EXOS_20_Kernel_Specification~48
	ET10-10_EXOS_20_Kernel_Specification~49
	ET10-10_EXOS_20_Kernel_Specification~50
	ET10-10_EXOS_20_Kernel_Specification~51
	ET10-10_EXOS_20_Kernel_Specification~52
	ET10-10_EXOS_20_Kernel_Specification~53
	ET10-10_EXOS_20_Kernel_Specification~54
	ET10-10_EXOS_20_Kernel_Specification~55
	ET10-10_EXOS_20_Kernel_Specification~56
	ET10-10_EXOS_20_Kernel_Specification~57
	ET10-10_EXOS_20_Kernel_Specification~58
	ET10-10_EXOS_20_Kernel_Specification~59
	ET10-10_EXOS_20_Kernel_Specification~60
	ET10-10_EXOS_20_Kernel_Specification~61

