o

-

K SREE T T b

- of

03-Jan-23 (MEL,LS) ZEN - Notes on Enterprise version Page |

Thiz 13 a list of all the commands available irn re
verszion of the ZEN assembler on the Enterprise. Thiz .z
.2y which can checkec by typing *:HELP™ while ir ZLN.
the commands are idsntical to the Lynx version cf ZEN and are
merkes "asz documanted”, Care must be taken with upper an~d lcouwer
zase letters in. commands since in many cases they are c.ffaerent,

ONCE LoRpED, TEN CAN BE WITARLISED 84 TTYANG © 26N (EWNTER)

Thnterim
varsion
Many

he

A a Gzzembie followec by pronct
Scurce file > <Enta2-i for in memory file, elz2 =zrv “llespec
for =z=sen:ly direct from cassstrte (o~ other
dev.ceai,
Option > <Enter> f2~ intszrna’ assembly (no list Iutoud)
Vofo~ listing to video
E for "iszing to parallel printer
LENETN) F fz~ ligting file to cassetts
femssire T X "XABE" “ile must ORG at QCQOGAR #0004
4 "APE" *i1le must ORC at 100nh
hNote: Zer genzrally locks at the EECAPE Key durirg asszaminy
lizstings e=c Alzz tne default number bazz 15 el o
decimal by the aszenkler.
B Evte search, As dccunenzzd,
c coepys. As documented.
c Z2all addresses ‘for ewec.tion in rea) time, usac by single
: gtep debugaer,
. = dizplavs =2'1 3ddressas
cO Cancels all addrz=sses
¢n. Address "r" addec to list of real time <& 15,
D Dowry As cocumented
E ¢ Editor, As documentez.
¥ File. As documentad.
G Siabal repiace. As caczunanted.
g Clebal move., As accunantad,

Copyright (C) 1885 lnjelliqént-g@gtware Limited

L4

03-Js1-25 (MPL, L53) ZEN - Notes on Enterprise version 7ige 2

—

Hn 4zw - quick disassemb’'y Tz & instructions fron acires: ‘n”’,
I "'n" ommitted <hen rext & instructicns.,

In Ingut from I1/0 per: "'n", If "n” ommitted thern use
~zmemoeraed port number,

J Jump, Az documentead,
J -ump with return. As documented.
K (i1l As deocumented,

L lLocate, As documented.,

M Yz2dify in Hewx. A= documertec.

m Modify in ASCII. As doc.men-ed,

N Not Léed.

Cn dutput to 1/0 pert "a", If "n" ommited thea us: renzmbered

SErt o aumber,

P Print to video. Az documerted.

P Print to printar, As documented.

@ Juery to viden., As cozunzntad, .
q Query to pr@nter. As documented.

R Pzad scurce (or RS, As doc.mented (but rot in DIZUS modez).,

RA Pun the single-stesgar fron address "n". {(:n DEBJC mode
on'y)y If "n" is crmittec ther use the current PC. Prompts
“oar A breakpoint adcress (ENTER for none), Przssirg X"
will stop 1t,

r sy Will alwayvs he 0U20DA.

Copyright (C) 1985 Intelligent Sofcffre Limited

INESNUCE SR | &

No T
SdPpe ﬁff:b

ne-Jan-25 (MRL,LS) ZEMN - Notes on Enterprise version Page =%
3] Szrted symbol tab'e, As doc_mented (but rot in DIZIUD mocz).
Sn 3:ngle step from add-~zs5s5 "n’ {in DEBUG mode orly’. 1- "N is

Wn

Xn

8]

3]

ttex

ormitted ther w52 cur~s=nt PC. Premots for breakpoint
acdres (ENTER for nora). Pressing any key will step ihe
~zxt instruction, excEpt for "X" which exits.

Tzrget, As documertec.

Je. As documented,

Veriry source fila for CRI e~ror check, NOT combarison wu.th

NEMON Y

“range video mode - but Azt erough RAM in casset=s vergior.
Jrite source file (o~ WS), 65 documented (net in DLEUG).
32tz window to "a" (ir DEBUG node oniy)y If "n’ .3 onmitted
-ran switches window node of*,

Examine regist2rs. As decuwented.

Ezamine registars with pazrametar exchange. 4z documer ted,

4

ap lines as documentad.

Zzro, fills the whols o fresz memory from ths 2d ©° so.rce
<2 himem with 0.

Pags “text

a~a2unc systam extensions {i1HELP. tEBEASIC
atc). .

Copyright (C) 1985 Intelligent Software Limited

05'\.]3

Up
Down
Left
Right
Shift

Shift

.o

Eraze

DU

DA

DE te

RI

-

RL

REF

WA

9 .

Ld
/
-

A-85 (MEL,LS) EN - Notes on Enterprise version age 4

-

Single key commands (if lst Keystroke)

- - - . we s W e . e W e wm W W MR e e wm e o . - e W - -

- up ! lin=2.
- down | line.
- hack 1 page.

forwarc 1 2age.

Left Start of te=Et,

Right End of tax:,

back &< by-x of menory dump.

forwarc Jvtez 0° memory duml.

edit curra2at lire,

- e e e v W e e e S e s e e AR Ge Ae e e e e W

Duplicate section of czde.

N.zaszamble,

dutput aptian V, o~ F or <erter?> for text buffer,

tdEdles single step dezuggsr ON/OFF sets defalit number bzsge

Pzad input scurcs
buffer,

filz f~=m cassette witnout upsetting C=xt

f=zad file

library < tee
“or text, File que
with text and subsscuert czde

Terminated by ZEC Key
§TCP key

frron

- .
s2a~the

= Afcer file zopenszd.
ntially for

inserted

, Fronpts
lett string mzteh

inte source file,

€
e

=
<
b3

(R

X i1 pacs pause
"y END" in text file.
Creoss reference 1istirg, AS documented.,

Jrite block of memory as "APP" file.

Arrite black of memory

as "XABRS" file.

Copyright (C) 1385 Intelligent Software Limited

Na-Ja~=-83 (MRL,LS) ZEN - Notes on Enterprise version Page 9

AN

PSEUDO OPS

LISTON - Listirg iz on by default,

LISTOFF

END ' - Mus: be gressnt,

ORG

DS or DEFS - Defire wr-in.tig ised storace.

DD or DEFD - Defire initialisad storage,

; DD 100,0 genzrates 100 zaro 2yte=.
DD S0,"." genegrates SO fuil stops.

- DW or DEFW - Defire wszrd.

DB or DEF3 - Defire bvies.

DM or DEFM - Define string.

'SHORT - Omly fi~st & bysas of DM listed.

LONG - Full listing of DM strings,

EQU - Symbol eguats.

LOAD - lLoads source fila.

H{ 4 - zero iz FALEE, non-zero is THEJT.
IF NOT

IFEQ value, value - gzch value is one byte numser or tabel,
ENDIF :

se+etries- END OF DOCUMENT. sastddtie-s

Copyright (C) 1985 Intelligent Software Limited

‘17

TO COPY THE ASSEMBLER FROM CASSETTE

In order to write the Assembler to a cassette recorder or other
storage device it is necessary to reduce the demands on the
memory in a 64K machine. The procedure outlined below achieves
this using the COPY command.

a) Push pause on recording machine

b) OPEN £200: "TAPE: ZEN"

VO JSPACE REQUIRED
c) Release pause on recording machine

d) OPEN £207: "TAPE:QZEN" ACCESS QUTPUT /ﬂo SPacE RequneD

e) COPY FROM £200 TO £201
f) CLOSE £201
g) CLOSE £200

Explanation;
b) Opens the cassette file for reading.
d) Writes out the header chunk.

e) Reads in 1st 4K of file and then writes it out.
Then reads in remainder of file but does not write it out.

f) Writes out the remainder of the file.

g) Closes input channel.

NOTE :

You?%ust use the correct remote socket for the tape you are loading
from. If you use the wrong one then step d) will make the tape you
are reading from turn on, instead of the one you are writing to.

The other remote can be used to control the tape you are writing
to BUT note that step b) will cause both remotes to start.

The remote for reading is the one next to the cassette IN socket
on the Enterprise.

You must connect 2 cassette recorders, one to read, one to write.

ENTERNGSE B T T

ZEN AMSEMBER :
TABLE o £ CONTEWNTS 1

Introduction i.1

Preiiminaries
Loading 1
Keyboard Inout 1
Memory Usaqge 1
Command Summary 1

i

Monitor Commands
Byte Search
Copy Memory
Colour
Fill
Ink
Modify wumeric
Modify Ascii
Query and Query-to-printer
Zero free memory

]
& 1a ik ek

e b . GPee

RN NNNNNN

BN NN NN e e

i

Editor commands
Text Entry
Text Editing
Text Manipulation
Down
Glaobal replace
Global move
Howbia
Kill
Locate
Print and Line-Print
Target
Up
Zap
Page and Scroll
Scurce Syntax

e s e e

PR

. .o

Wl Wi W W W W W W
“ e e

.

L T S P SN SRS E SR

aaae e ooddEal S

Assembler Commands
Assemble
Output options
Increase symbol table
Reference listing
Scrtad symbol listing
Comments
Operators
Operands
Labels & Symbols
Pseudo-ops
Assembler output
Example Source File
Error messagas

« v e “ e e

e B B B b B b B BB D B
O @ U B L W NN bt et e

!
. Vi) : :

Debugging commands
Debugglag 5
Re-entiy address 5
Jump 5
Jump with return D
Operating system B
Examine registers 5
Exchange registers 15

Cassette Input / Output
Write source 6
Verify source 6
Read source ' '3
Read object) 3
Verify cbject 6
Write object 6

Miscellaneois Section
Rom routines e
Printer driver and Printer commands 1.
Zen pointers 7.
Re-entering Zen from RESET 4

: S-Lr:'\ﬁ Seds slm\s & o(aot/,'.\s
S\sslﬂx é'- ecktnsion scan

Toc t/o r‘&bﬂ—tkon, use device famay.

(ii)

Z EN Editor / Assembler

EE R eI 2R EEE L T2 it d il d

Introduction

200 in a complete package for the creation of 280 machine code programs
ant ~~mhines a text editor, fast 280 assembler, machine code aonitor
angd de-bugger. A comprehensive range of commands is available for
loading and saving source and object [iles to and from cassette.

The original 4K Zen was created by John Hawthorne and this extended
Lynx version has been produced by Laurie Shields. The very first Zen
was hand assembled by John shortly after the 280 chlp was invented and
all subsequent improvements and adaptions to other micros, (Hascom,
Sharp, T S80, Lynx, Colour Genle, etc), have been by Zen re~assembling
improved versions of the source code. ,

The structure of this manual will follow the logical division of Zen's
functions and their associated commands into seven main categories,

- namely, a Preliminary section on loading, keyboard input and memory
usage, Machine code monitor, Text editor, Assembler, Debugger, Cassette
1/0, Miscellaneous for the bits and pieces.

Preliminaries

Loading

Zzen is supplied on cassette in Lynx S00 baud machine code format, the
filename is "“ZEN". To load use the MLOAD command as follows:

MLOAD “ZEN™ <cr> Where <cr> stands for the RETURN key. }
1f a bad read is detected then the Lynx displays
an appropriate message and jumps to its Monitor.
To return to Basic key: J <cr>,
else to re-read the tape key *ZEN" <cr>,.

Once successfully loaded Zen will take over control.

After initialising the screen wiil clear, the copyright notice is shown
and following any keystroke the command loop prompt is displayed.

z>

Zen now wants a command.

"
Page 1.1

Keyboard Input

whilst awaiting a command, Zen is constantly scanning the keyboard
testing for ome of a number of special keys, but only when pressed as
the first keystroke following the 2> prompt. These keys are decoded
as immediate commands to give greater ease .of use without always
waiting for the <cr> key.

The up and down arrows move up and down one 1line at a time through the
source file: if no file exists or an attempt is made to go beyond the
end of the file then an EOF error message is displayed. The shift-uyj
and shift-down arrow keys move to the start or end, and the right and
left arrows paging forwards or backwards. The ',' key means edit the
current line and Return by itself clears the scraen. The use of thesc
commands is explained fully in the text entry section.

If none of the €foregoing keys are pressed then Zen stores the Inputtec
keystrokes in a buffer, no action being taken until the <cr> key is
pressed. zen's commands generally take the form of a command letter
followed by in some cases an optional numeric or character parameter.
Spaces before the command letter, or between the letter and parameter
are not permitted. Numer ic parameters can be postfixed with H or }
(hexadecimal), O or o (octal), 4@ (decimal) or b ibinary).

Typical single letter commands without parameters are A for assemble
and X for examine wuser registers. Examples of commands ~witl
parameters are Q7A00H for query memory block starting at 7A00 Hex, aac
LCassette Ffor locate the text string “"Cassette” in the source file.
Commands which expect a parameter where none is given default to eithe:
the number 1 or the last used parameter as explained in detail late:

on.

Memory Usage

Zen ls a low memory machine code program that starts at 6CO00H and
occupies memory up to about B8400H depending on version. The next 511
bytes following the end of Zen are reserved for the Symbol Tabls
(explained later) and immediately following the symbol table will br

the source file for the assembler. The assembler source code i¢
stored in memory exactly as keyed in without line numbers and without
tabs between fields. The memory size limit set prior to loading Zer

is respected at all times and the size of the source file and the Himer
value can be displayed by the command H, for Howbig.

Page 1.2

Command Summary

z

REF

Assemble

Byte search

Copy memory block
Down

Enter editor

Fill

Global replace

~ Howbig

Increase Symbol Table
Jump

Kill

Locate

Modify (Numeric)

New line (edit)

Sorted Symbol Table
Target

up

— e = >

Write
Examine'teglstets
Not used

Zap text

Cross reference listing

5¢~14U~J£*ﬂ
~Not—-used — q_

Not used

P ;
:é:;i:;ﬁ:ﬂeoioutripaiahy

d Not used
e Not used
£ Not used
g Global move
h Not used
D e 7 Ve
3 Jump with return
k Not used
1 Not used
m Modify (Ascii)
n Not used
-] Not used
p Line-print
q Query to line-printer
(E} Not used
s Not used
t Not used
u’ Not used
/;3 Not used
~—/
w Not used
x Exchange registers
Y Not used
O] zero‘f"e;;“néaa;yr~]
dm«u o
.

1.3

R P P T Y ST NP U

o e 2T Bt e

Monitor Cammands

METS RSN ==C ==

These monitor commands are provided for direct inter-reaction with
Lynx's memory:

A Byte search numeric parameter
c Copy

c Colour (paper) pumeric parameter
F Fill

i Ink numeric parameter
M Modify in hexadecimal " -

m Modify in Ascii i "

Q Query memory " =

q Query memory to printer - -

z zero free memory

B Byte search, initialises a search for the parameter value.

Where the parameter is greater than 253, Zen will search for the
2 byte value stored in the Lsb/Msb 280 format, otherwise the
search will be for the single byte.

Zen will then prompt for the Start and Stop addresses.

Memory will be searched accordingly and on locating the first
corresoonding byte, its address will be displayed.

To continue the search just key B.

Example ... Z>B27 <cr>
Start>1000H <cr>
Stop>1500H <cr>
On the early Lynxs Zen will respond with:
Address 115 8
The search can be continued with B <cr> until the end of search
address is reached whence Zen will display the message: Stop>.

Note: Modify, Byte search and Query all use and maintain the s
current object pointer. Having found a particular byte by the sea
routine then just keying M or m <cr> will enter the appropriate mod
mode at that address, or keying Q <cr> will display the memory bl
starting at that address.

C Copy, copies a block of memory from Start Address to Stop
Address inclusive to a Destination Address.
The copy is intelligent and overlappling areas of memory can be
moved with complete security. If the addresses do not
overlap then the source data remains intact. ;

N\ .
¢ '\ Colour, the supplied parameter is used as the colour for the

background in subsequent printing. s

Page 2.1

Fill, will fill a block of memory from Start Address to Stop
Address inclusive with a Data constant,

During Copy and Fill no check is made on whether the memory
r-~iving area is correctly storing the data.

Ink, the supllied parameter is used as the ink colour for all
subsequent printing.

Modify, lets you examine and modify memory contents. If you
supply an address parameter then display commences at that address.
Modify takes a default of the Current Object Pointer which is an
cbject pointer similar to the source current line pointer.

The address and the byte at that address will be displayed

in hex followed by a prompt for input data. The default
response will cause a step onto the next address. Entering
an actual value causes that byte to be replaced with your
parameter. Your parameter is erased on the video display,
the new value is displayed and Zen steps to the next address.

Entering the character "-" as a parameter means back-step one byte
and to exit simply key a full stop "." as your input.

The current object pointer is left pointing at the last byte
displayed.

7en checks after each modification and will exit to command mode
on an error, eg trying to modify ROM.

Modify-in-Ascii, similar to modify but only single character

accepted as input, except for exit ".." and backstep "--

Query, displays a block of memory in hex and as literal
Ascii. This command also takes the current object

pointer as the default parameter.

Memory is displayed as eight lines of eight bytes, each line
comprises three fields:

1 Address
2 Eight bytes in hex
3 Eight bytes literal

Control characters (less than 20H and greater than OBFH) are

converted to full stops to prevent the display reacting.
The current object pointer 1is left pcinting at one greater

than the last byte displayed.
Lineprint Query, as above but with output to the printer.

Zero, fills the whole of free memory from the End-of-Source
to Himem with binary 0.

Page 2.2

b . A - e N e T e i

+ Editecr Commands

ErmETESEIXTRER SRS

These commands are provided for the creation and editing of the
assembler scurce file. The text is stored in the computer's memory
and when the text entry or editing is complete the whole file can be
written to cassette.

Le]

Down through file numeric parameter
also down-arrow

Enter text

Global replacement

Global move

Howbig source file

Kill in-memory file

Locate text string character string parameter
Hew, (edit) current line :
alsn comma

Print lines to screen numeric parameter
Print to lineprinter - . .

Target to line numeric parameter
Up through file numeric parameter
also up-arrow

Zap (delete) lines numeric parameter
Page forward :
Fage backward

Shift up-arrow moves to start of file

Shift down-arrow moves to end of file

cHT T ZRNTIAQOm

by

Text Entry

Taking the 'E' and 'N' commands first of all, as these are concerned
with the process of text creation.

E <cr> causes Zen to enter the text entry mode by displaying the
current line number and awaiting keyboard input, similar in fashion to
the auto command in Basic. T€ no &ource exists then the line
numbering starts at 1, otherwise the editor enters the file at current
line number, pushing that line and all after it down to make room for
the new ocnes. Keying *N' followed by <er>, or just comma if first
keystroke, engages the edit mode for the current line.

For text entry and editing Zen wuses the Lynx's Rom routines for
character input. Puring assembly Zen formats the output to the videc
and printer so there is no neced to set out the source code in tabular
or field format. A completely free format s accepted, the only
requirement being that a colon ':’ is placed immediately after a label
and that a space is generally required between the Opcode and the
Operand.

When displaying lines with the various editor commands Zen examines the
line first to -, determine whether or not it contains a label. 1f “n
label is preseht then Zen inserts four spaces into the display afte:
the line counter so that the labels stand out, otherwise the line i
displayed after the counter exactly as it is stored in memory.

To terminate the editor mode enter a period '.' as the [first characte!
of the next line.

Page 3.1

Text Manipulation

As the 280 Assembly Language is entirely line orientated the Editor in
Zen is line rather than character orientated. Zen always maintains
an internal pointer to the current line in the socurce file; the
current line always beino the last one displayed.

(o} Down, pointer moves down towards the end of file (parameter) lines,
Example ... D37 <cr> moves the pointer down 37 lines.
D <cr> is the same as down-arrow, moving down one line.

G Global, replaces a search text string with a replacement one.
Without a parameter, eg just G <cr> the whole of the file
is searched. Where a numeric parameter is supplied, eg G3 <cr>
only the parameter number of lines are searched starting at the
current one.
Following the command you are prompted for search and replacement
text strings. A default entry to either prompt causes an abort
back to the command lcop prompt.

Example ... 2Z>G <cr>

Change>CASSETTE <cr>

To>Tape <cr>
Would result in every occurrence of ‘CASSETTE' in the whole of the
source file to be changed to ‘Tape', with a reduction in file
size of four bytes for each change.

Example ... 2>Gl <cr>
: Change>HL <cr>
To>BC <cr>
wWould result in the substitution of BC for HL in the current line
only (as the parameter 1 was supplied), So if the current line
was LD HL,1234 then it would become LD BC,1234

g Global move, is a block move of any number of lines of text
from g;e part of the source file to another. To execute the
comma Zef needs the start and end line numbers of the block, the
line number in front of which the block is to be placed and
sufficient free memory equal to the size of the block, otherwise
the command will be aborted with a Memory Full error message.
Zen also checks that the destination line number lies outside the
range of the biock, To move a biock to the end of the f[ile a
destination number one greater than the ending line is accepted.
On completion the first line of the file is displayed.

Example ... Z>g <cr>

Start>10 <cr>

Stop>20 <cr>

Dest>1l <cr>
This sequence of commands will move lines 10 to 20 inclusive from
their original position to be in front of line 1, ie the start of
the file. Lines 10 to 20 become lines 1 to 11, the old lines 1
to 9 become 12 to 20 and lines 21 onwards are the same.

R Howbig, displays the start and end addresses of the in memory
source file and also the highest available byte in Ram.

Page 3.2

P o Al

X Kill, erases the source file from memory by making the end of file -
pointer equal to the start, this being the state of the pointers
when Zen is initially entered. Note that after killing a file
it's contents are still im memory but not accessible as they are
beyond the new Eof. Hew text will overwrite the old file.

L Locate, will find an arbitrary target string in the source file.
Example ... LBIT 7, (HL)
Moves the pointer to the first line containing the string
*BIT 7, (HL)' makes it the current line and displays it. The file
is searched downwards from the current lime. If the strming is
not located the pointer is at EOF,
There are no restrictions on the string content,
L without a parameter defaults to the previous search string.

4 print, displays (parameter) lines on the wvideo display.
The last line displayed is the new current line.
Example ... Pl0 <cr> will print 10 lines to the video
in scrolling mode without clearing the video first.

P Line Print, as for Print but output to the printer.

T Target, pointer moves to the parameter line number.
Example ... T25 <cr> makes line 25 the current line.

U Up, pointer moves up (parameter) lines.
Example ... U37 <cr> moves the pointer up 37 lines.
The up and down arrows also scroll one line at a time.

Z Zap, erases (parameter) lines from the file, starting with

the curreant one.
Example ... 237 <cr> will delete the current and next thirty six
lines from the text.

-»' Page forwards, the video screen is cleared and the next fifteen
lines of text, starting at the current line, are displayed.

+ page backwards, Zen assumes that the current line is at the bottom
of the screen and after clearing the video, 23 lines, terminating
with the one 22 before the current one, are displayed.

Note Zen uses the following syntax in the source coding:

{1} EX AF,AF rather than EX AF,AF'

(2) The abbreviated format of just (IX) or (IY) instead of (IX+0)

and (IY+0) is not permitted. -
So that LD A,(IX) shown in some listings must be coded LD A, (IX+0)

(3) Negative offsets to the index registers must be shown as such
rather than as a positive offset of a negative value, eg:
LD A, (IX-10H) rather than LD A, (IX+0FCOH)

(4) When assembling to cassette the program execution address must be
indicated tc the assembler with the EXEC pseudo-op.

Page 3.3

Assembler Cowmmands

The folleowing commands are provided for assemblinag the source file and
production of the resulting object code or list files.

N
I
REF
S

REF

n-amnble,

Inrrease Symboal Table aumeric patameter,
Cross referance listing character parametec.
sorted symbol table listing character paramneter.

Assemble, the source file from start of file to the END pseudo-op.
Zen will then prompt for an output option, which are:)

v video (List to videol).
E External (List to external printer and video).
c Casssatte (Object code to tape in MLOAD format).

The default option, ie just <cr>, generates no output (except
if a LOAD pseudo-op is included within the file then cbject code
generated will be loaded into memory). This is the fastest
acsembly mode and should be used until all source errors are
eliminated. If you select the cassette option then you will be
further prompted for a filename, which must be in double gquotes.

Increase, will increase the amount of memory allocated for the
symbol table by the numeric paraweter, provided there is
sufficient free memory available, other~ise an error message is

displayed showing where the Eof would have resulted,

Example ... I300 <cr> gives an increase of 300 bytes to the
symbol table and a correspvonding reduction in the text buffer.

Initially Zen reserves 512 bytes for creating, during the first
pass, a look-up table of label names and their associated values.
with large programs this may not be sufficient and assembly would
terminate with the error message ‘Full’.

The increase in symbol table size is achieved by moving the whole
of the source file towards Himenm.

Reference, produces a listing of all the labels stored in the
symbol table, their hexadecimal values, the line number of their
occurrence, aind all references to them in the in-memory source
file. If a selector parameter letter is provided,

eq REFX <cr>, then the listing would be restricted to labels
beginning wiklh that letter.

After the command you will be prompted for an output cption,
similar to those for the assewbler list file.

Sort, alphabetically sorts the symbol table (first letter only)
built during the previous assembly. Adding a selector letter to
the command will restrict the listing to symbols beginning with
that letter. Qutput options as for REF.

Example ... €G <cr> will give all the labels beginning with G.

Page 4.1

&

)

~

T BT v, OV

ad _g

The Assaubler

Zen expects scurce statements to be constructed accordiag to the syntax

defined in

the Zilog 280 Assembly Lanquage Prograsmmiag #Maiual.,

Each line of the scurtce file is a statement divided, conceptuaily, inte
at wmost four fields:

MESSAGE: LD #HL, GREETING; Say helloe

Label

« « « « Operator

e & & * &

e o = 8 s

. « Operand(s)
e o o o o s o Comment

We say cénceptually divided because the components of a stateament don't
have to be positioned into fields. As long as you wuse the correct

separators
format.
COMMENTS

OPERATORS

CPERAWDS

(spaces, commas, etc.) ZEN accepts statewents in free

Comments are ignored by the assembler. Thay are preceded
b7 a semi-colon ";" and are terminated by end of line.

There are 74 generic operators (CALL,LD,JP,etc,).
In addition there are the PSEUDO-OPS described later.

The number of operands in a statement depends upon

the operator. Examples:

NOP No operands

Je One operand

BIT fwo operands

JR Cne or two (JR SYMBOL or JR Z,S5YMBOL)

Operands may be:

Register names (A,B,DE,IX, etc.)
Condition codes (Z,NZ2,C,M,etc.)
Numbers

The number group i3 the most complex. All the following are
accepted as numbers:

ASCII LITERALS
The assembler will cenerats the crdinal value of any
character encleosed in single or double quotes.

NUMBERS

Deciwmal, hex, octal and binary bases are accepted with
decimal the default. Hex numbers are "H" postiixed, octal
numbers are "O" postfixed and binary are "B" postfixed.
Numbers must begin with a digit, leading zero is sufficient.

SYMBOLS
These_are explained in detail later on.

PROCRAM COUNTER

This is an internal variable which simulates the ruatiases PC.
1t is accessed by using $§ (dollar).

Paage 4.2

OPERANDS In addition all of the preceding data types may bc
elements of an expression formed using the infix
mathematical operators:

+ ddition / Division
- Suptraction & Logical AND
* Multiplication . Logical OR

An expression can be used anywher= that a simple number can
be used. The following ars all valid: £

LD DE, START*2-782
LD A,"P".804d
JR NC,$-5

Expressions are evaluated strictly left to right with no
precedence ordering. Arithmetic is unsigned 16 bit integer
and overfleow will be ignored.

Elements in an expression need not be delimited by
separators as the math operators are implied separators.

LABELS ‘A label is a way of marking a statement. Each time you use
an operator like JP, CALL, etc. you need a way of specifying
: the destination as an operand. Assembly langquage allows you
to use a symbolic name as a label. BASIC is an example of
a language without this facility, the line nunmbers act
as labels. Symbols will be explained in greater detail.

SYMBOLS

A symbol is a name with an associated value, the name i3 used rather
than explicitly stating the wvalue. A symbol's value is declared to the
assembler in one of two ways:

1 By placing it at the start of a statement. The assembler assigas
the value of the program counter to it.

2 By using the EQU pseudo-op.
This allows you to assign your own value to a symbol .
Example BACKSPACE: EQU 8

wWhichever method is used a symbol must be postfixed with a colon ":*
when declared. A symbol must begin with a letter but may contain
letters or numbers after that. Letters may be upper or lower case.
Zen allows symbols of any lenath although symbols longer than seven
characters will affect the listing.

Ther2 are certain reserved keywords which cannot be used as symbols.
These are:
Operator names, register names and condition code names.

Note that all «keywords are uppeccase, using the same name in lowercase
would be perfectly acceptable as a label.

Paen 1

PSEUDOU-OPS

These

are additional operators which have no eguivalent in the Z8&9

instructina set but are understood py the assewbler., They are used in
the same way as the normal operators. .

LISTOFP Stops listing {No operand}
LISTON Cancels Listoff {No operand)
END End assembly (3o cperand)
DS or DEFs Define Storage {One operand}
DA or DEFwW Define Word {One operand)
EQU Equate {One operand)
0orG Origin {One operand)
EXEC Execution address (One Operand)
LOAD Load memory {One operand)
OFFSET Cifset object code (One operand)
DB or DEFB Define Byte(s) (Multiple operands)
or DEF#M
END This operator MUST be used to terminate assembly. Failure do do
so wil: result in an error message and an incomplete assembly.
DS Skips a number of object bytes. Commonly used to reserve
or space for a text buffer, stack, etc., where the object code 7
DEFS doesn't need to be defined.
DwW Generates a word (two bytes) in the object file in reversed
DEFW order as required by the 280 sixteen bit instructions.
Example ... BUFFER: DW VALUE
Would make the contents of location BUFFER equal to VALUE.
o)} Generates the value of the operand(s) in the object file,
DEFB takes as many operands as desired, separated by commas.
DEF

Example ... DB 6, 93H,"T".80H, NEwWLINE

Each operand may be an expression but obviously no expression
can have a value greater than two hundred and fifty-five
decimal. The progqram counter will be incremented after every
operand as if each were on a separate line.

In addition to the usual data types any operand may be of the
type ASCII literal string.

Example ... MESSAGE: DB"Ready Cassette", NEWLINE

Strings may be of any length but, unlike single character ASCII
literals, may not form part of an expression. A stri.,
formed in the same way as a single character literal, o,
enclosing in matching quotes, Note that single and double
quotes are implied separaters like the infix math coperators.

A\
You may use a quote, of either type, as a literal by using the
OPPOSITE type of quote as the delimiters.

Page 4.4

EQU

ORG

SXEC

LOAD

Note:

OFFSET

assigns a value to a symbol .
Example ... NEWLINE: EQU 113

The operand may, 2s usual, be an expression but therz2 is a
restriction on the symbols you may use in the expression. This
is because the operand must be capable of immediate resolution.
The value of any symbols used in the expression must already be
knawn *o the assembler, forward referenced symbols will result
in the UNDEFINED error flag.

Example ... NEWLINE: EQU BACKSPACE+S
BACKSPACE: EQU NEWLINE-S

This sequence is ILLEGAL becausae each symbol is defined in
terms of the other. The "no forward reference” rule is
designed to prevent you making such a mistake inadvertently.

In practice you will probably never encounter such a situation
as most EQUATES have simple operands.

Defines the origin of the object file. This operator may be
used as often as desired throuchout an assembly to produce
cections of code at different locations.

The operand must conform to the *no forward reference rule for
obvious reasons.

Tells the assembler the execution address of the program if
beina output to cassette.

Lets you load the object code into memory, at any address, as
it is produced. Note that the use of a subsequent ORG operator
turns off the loading process; each time you use a new origin
you nust specifically re-establish the LOAD cominand.

The loading process is entirely independent of the output
option specified on entry to the assembler. If the operator is
not used then no memory location outside Zen will be altered.

The LOAD instruction must not precede the ORG oseudo-op.

As the LOAD is independent of the ORG address it is possible
for code to be generated for one location in memory and loaded
into another. After assembly the 'C’' command can be used to
copy the code to its correct location.

:

Tells the assembler to add the value of the operand to all load
addresses of object code whether to cassette, disc or listing
file, Assembly defaults to an offset of zero and this
pseudo-op may be ignored unless it is required to produce code
to load at one address but to execute following a move to
another.

LISTOFF Tells the assembler to stop generating any output to the video
s or printer.

LISTON Re-establishes the llstinq.ptocess. Assewbly always starts in

this modé.
Page 4.5

Assembler Output

Zen supports two list devices, the 40 character x 24 line video and an
external printer.

Zen generates completely formatted sutput +n all *he dovices. "
Listings are output a page at a time with 2 delay between paqges.
The pages are set at 23 lines to the video and 60 lines to the printer.

Pause Control: Pressing any key during the delay between pages will
hold the listing until another key is depressed, If the key pressed is
*X', then the current operation is aborted and Zen returns to the
command mode.

Sort and Cross Relerence outputs are similar in principle to assembly
listings with pause control at the end of each page.

The following iistings of a short machine code program to print a
message on the video and await the <cr> key input is shown in three
forms:)

a) Text as keyed in with Zen's auto line number prompt,
b) Source file a3 displayed on the video with the page command, and
c) the totally formatted assembler output.

a) Text as keyed in, the shaded b) Page display of file:
characters are 2Z2en's prompts:
Z>E
1 ORG 8AQ0H 1 ORG 8A00H
2 LOAD 8AOOH 2 LOAD BAOOH
3 START:EXEC START 3 START:EXEC START
4 LD HL, MESSAGE 4 LD HL,MESSAGE
5 LOOP:LD A, (HL) S LOOP:LD A, (HL)
6 INC HL 6 INC HL
7 CR A 7 CR A
8 JR Z,KEYIN 8 JR Z,KEYIN
9 RST 8H 9 RST 8H
10 Jr LooP . 10 JR LOOP
11 MESSAGE:DB'HIT RETURN',O 11 MESSAGE:DB'HIT RETURN',O0
12 KEYIN:CALL 202FH 12 KEYIN:CALL 202FH
13 ¢p 13 13 CP 13
14 JR NZ,KEYIN 14 JR NZ,KEYIN
15 RET 15 RET
16 END 16 oY)

page 4.6

(c} Assembler Cutput

This is the final output format from the assembler using the V' or 'E’

outputr - eption. The page numbering is omitted due to limited screen
s17~ wnen outputting to the video.
Page 1
1 ORG BAQOH
2 LOAD 8AUOH
3 START: - EXEC START
4 8AD0 210B8A LD HL,MESSAGE
S BAO3 7E LooP: - LD A, (HL)
6 8A04 23 INC HL
7 8A05 B7 OR A
8 B8AO6 280E JR Z,KEYIN
9 8A08 CF RST 8H
10 8A09 18F8 JR Looe
11 BAOB 48495420 MESSAGE: DB 'HIT RETURN',OQ
11 BAOF 454ES5445
11 8Al3 524E00
12 8Al6 CD2F20 KEYIN: CALL 202FH
13 8Al% FECD cp 13
14 3A1B 20F9 JR NZ,KEYIN
15 8AlD C9 RET
16 END

Exec Aadr 7A00

pPoints worth noting:

(1) Leading zero suppression on all decimal numbecrs.

(2) The fully formatted output.

(3) Tha LOAD pseudo-op in line 2 following the ORG in line 1.

(4 Line 11 has a seven character label 'MESSAGE' .

(S) In line 11 the zero byte is included after a comma.

{§) All the bytes of the message are expanded and their hex values
given against their memory address.

Paqe 4.7

Assembler Error Handling

- - - - -

If the agsembler finds an error in the source code the following w

happen:

(1} The ROM cassette 'Off' routine ls called.

(2) Assembly terminates.

(3) An ERROR message is displayed.

(4) The incorrect line becomes the editor current line.
(S) The line is displayed.

(6) The command loop is re-entered.

You can now correct the error and assemble again.

Error Messages

- - — - -

Double Symbol

Undefined
Reserved
Symbol .
Full . .
EOF . . .«
ORG ! . .
Huh? . .
! . o @

Operand

B

The assembler

. You have declared the same symbol more than once.
. You have used an undefined symbol.
. You have used a reserved keyword for a symbol.
. An obligatory dymbol is missing (eg with EQU).
. The symbol table is full (Use I command).
. You have forgotten END and have hit EOF.
. No origin specified.
. The line doesn't make sense.
Unexpected condition such as <ESC> key.
. Something is wrong with the operand......
Exawmples LD A,6256 too big)
BIT 9,8 (no bit 9)
LD(DE),C (illegal instfuction)
LOAD over 2Zen's code or source file
Also any attempts to indéex or jump relative
out of range.

will catch all incorrect statements,

Page 4.8

t

*
-

5
-

e

~

Debuggjing Commands

-

The following commands are provided for wuse with Zen's inbuile
de-'ugging feature. They are intended primarily as an aid during the
prc ess of creating a machine code program and consequently a
disassembler facility is not included. Where the user needs to
monitor the workings of sachlne code programs other than his own, then
a more dedicated de-bugger package is recommended. A number of Zen's
commands, such as Bytefind, although documented under the Monitor
gsection, could also have applicability during de-bugging.

J Jump numeric parameter
3 Jurmp with return . numeric parameter
0 Operating system return

b 4 Examine user registers

x Exchange user reglsters

Debugging

-

Should you wish to test a piece of machine code it is necessary to
instruct the 280 to jump out of Zen's control to the memory address
where the start of the new routine is situated. Usually once the test
program has executed we wish control to be returned to Zen for further

. development. This requires a special command to the %80 after the last

instruction we want executing, so that the 280 knows where to find Zen.

There are three ways of doing 1it. Firstly Zen has a debugging
re-entry address three bytes after the normal start and we can include
in the test program’s source [ile CALL REENTRY wherever we want control
to return to Zen. Naturally we must also include REENTRY EQU 6CO03H,
this being the value of Re-entry for the Lynx tape version of Zen.

Secondly, the lower case 'j' Jump command puts Zen's re-entry address
onto the user stack prior to jumping so that provided the Stack Pointer
{sn't moved and the routine ends with a retura (C9H), then control will
pass back to Zen. The third method employs the 'breakpoint'
technique, where at the terminating address of the program undar test
the actual coding is altered to an instruction to return to Zen.
Once Zen is re-entered the contents of the breakpoint address are

restored to their original value. This is the method wused by Zen
following a 'J' command, where the next response from Zen is a prompt
for the address of the breakpoint. Naturally this technigue is only

applicable to Ram based programs as it is impossible to set a
breakpoint in an unalterable part of Rom.

J Jump, tranfers control to a user program at the parameter addreass
supplied. You will then be prompted for a breakpoint address.
Both of these input parameters have default values.

By keying just J <cr>, execution will commence at the existing
User Program Counter (UPC), which is displayed. The default
response to the breakpoint request means that no breakpoint will
be set. If you supply a breakpoint then the byte at that
address i{s saved and a RST 30H instruction is inserted there.

When the breakpoint is encountered control is transferred back

to Zen via the REENTRY vector to the TRAP handler where the
original code is replaced. The entire 280 machine state is saved
by TRAP and completely restored to the machine at JUMP.

Page 5.1

3 Jump-with-Return, is similar to Jump but the user program is
treated as a subroutine which has been called. The machine
state, with the exception of the SP and PC, is restored, the
address of the TRAP handier is put onto the stack and controil is
transferred to the parameter vaiue. If no patameter is supplied
then the default of the last previcusly supplied value is used.
Control will eventually return to Zen via a RET instruction and
conseguently it is Impossible to trap the program counter prior to
the return to Zen, but otherwise the whole of the machine state is
recorded and available for inspection.

If you have keyed in the 1little sample program given in the previous
section then after assembling it you can use the above de-bugging
commands ., Since the coding is written as a sub-routine wuse the
Jump-with-return command by keying:

Z>38A00H <rr>

The message should be displayed and until you press the Return key your
Lynx will be completely un-responsive as the routine ignores all other
keystrokes. On return to Zen the usual command loop prompt is shown.

Alternatively you could use the normal Jump command and set a
breakpoint at the end of the program to re-enter Zen. The breakpolint
would be set at the address of the RET command, le B8AlDH and the
command sequence, including Zen's prompts is as follows:

-

Z>J8A00H <cr> \
Brkpnt>8AlDH <cr>

The result will be the same as for Jump-with-return and when back at
command level you can use the examine registers facllity to see the
complete machine state of the 280 at the breakpoint.

O Operating system return. On recelving this command, which does
not take any parameters, Zen jumps to 38EBH, the re-entry address
e~ Lynn—B

Sor_th

X Examine user registers. The machine state recorded by the TRAP
handler, or if prior to any de-bugging the initialising register

values, is displayed. All the 280 registers are labelled and
displayed with the main or prime registers on the top line and the
alternate or non-prime set on the second llne. Both the flag

registers are fully decoded in the conventional fashion. The

value shown for the PC register is the default address for the U F
used by Jump (not jump-with-return), and the SP register shows tﬁv
User Stack location that will be used during debugging.

x Exchange user registers. The user registers are displayed in
turn with prompts for their new values. The default entry leaves
the values upchanged and a '.' will exit the routine.

If the AF register pair are altered then the flags are decoded.

Page 5.2

	ZEN_Assembler~01
	ZEN_Assembler~02
	ZEN_Assembler~03
	ZEN_Assembler~04
	ZEN_Assembler~05
	ZEN_Assembler~06
	ZEN_Assembler~07
	ZEN_Assembler~08
	ZEN_Assembler~09
	ZEN_Assembler~10
	ZEN_Assembler~11
	ZEN_Assembler~12
	ZEN_Assembler~13
	ZEN_Assembler~14
	ZEN_Assembler~15
	ZEN_Assembler~16
	ZEN_Assembler~17
	ZEN_Assembler~18
	ZEN_Assembler~19
	ZEN_Assembler~20
	ZEN_Assembler~21
	ZEN_Assembler~22
	ZEN_Assembler~23
	ZEN_Assembler~24
	ZEN_Assembler~25
	ZEN_Assembler~26

