=
%
O
=
&
W
O
e
o
e

CONTENTS

Preface

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8

Appendix 1
Appendix 2

Appendix 3

Getting started

An introduction to LISP
Input/Output

Defining functions
Saving and loading
EXOS

Interrupt handling

The functions of IS-LISP

EXOS variables
Error Messages

Function keys

IS-LISP for the Enterprise version 1

© 1985 Intelligent Software Ltd

Programming: M. Richer

Manual Writing R. Hurley, J. Hurley, RD. Virgo

14
18

24
27

66
69
71

PREFACE

Although LISP (LIST PROCESSING) has been around for twenty or
more years it is still highly popular in the fields of ‘Artificial
Intelligence' and 'Expert Systems', where its flexibility and
expandability have made it an ideal choice.

This manual is not aimed to be a complete tutorial on the
language but explains the implementation of IS-LISP on the
Enterprise computer and looks closely at how it interacts with the
user and the EXOS operating system. It will provide the complete
beginner with a short introduction to programming in the
language, but will assume that the reader is familiar with the
operating of the machine and has at least a limited knowledge of
programming in BASIC.

Because LISP is an interactive language, with each function being
evaluated as and when it is entered, it is a simple matter to
experiment with the various functions. The reader is advised to
test the examples contained within the manual whenever possible.

Books on LISP

There are many good books on programming in LISP. The
following are especially recommended:

"LISP on.the BBC microcomputer” by A. Norman & G. Cattell,
gives a good introduction to LISP programming. It describes BBC
LISP which is very similar to IS-LISP.

“LISP" by P. Winston & B. Horn, describes a different dialect of
LISP, but explains some advanced features such as macros.

Chapter1l
GETTING STARTED

To start programming in IS-LISP, plug your cartridge into the port
on the left-hand side of the Enterprise microcomputer and switch
on. If your computer is already turned on, press the Reset button
twice. The normal cold start procedure will take place, with the
machine performing check on the sections of memory, and a
message as shown below will appear on the screen.

You are now ready to start programming and statements are
entered via the keyboard in the same way as when using
IS-BASIC. All communication between the user and the LISP
interpreter is done through the ‘editor’ which means that the
cursor keys and joystick can be used to move the cursor around
the screen in order to enter, amend or delete text.

When a line of program has been correctly typed, pressing return
key will cause 'EVAL' to come into operation and, providing it is
syntactically correct, it will be evaluated and the result displayed
on the screen.

For example, to add two numbers together we would simply type
(PLUS 3 4) and the computer would reply with 7.

At this point it is important to remember that each line of LISP
program is checked and evaluated as soon as it has been entered
by pressing the return key. This is completely different to the
procedure normally encountered when working in a BASIC
environment, where a section or even the whole program is
entered before an attempt is made to execute the code.

Bearing this in mind, you are now ready to start experimenting
and programming in LISP and the next few chapters will provide
you with a guide on the use of the some of the common LISP
functions.

Chapter 2
AN INTRODUCTION TO
LISP

In LISP, as with all high-level languages, the programmer requires
the capacity to display textual messages on the screen and also to
use such words as are appropriate as variable names. The name
given to such words in LISP is either 'identifier' or ‘atom’, and
these constitute the most elementary objects that can be used in a
LISP program.

An identifier is an object that is constructed using characters (e.g.
Z, DOG, T. NIL) and which can be used for either of the purposes
described above, Atoms include all identifiers, together with
numbers (e.g. 7, -24). Using these atoms we can construct the data
structure that gives LISP its name. i.e. lists.

A list is a collection of items of data, each of which has a
successor, except for the final item. It is useful to consider a
system of pointers that will allow a user to traverse a list, with each
pointer locating a memory cell containing a pair of pointers. The
left-hand pointer indicates the atom (or list) that is the data, and
the right-hand pomter where the remainder of the list starts. For
the list (AB 1

As indicated above, the items of data stored in a list can indeed
be a list themselves, so the list (A(12...) B...) consists of

%u_. . 5 %13_.

It has already been mentioned that all items in a list have a
successor, except for the last, for which LISP reserves a special
identifier called ‘NIL' to represent the empty list (). Thus the full
diagram to represent the list (X Y) is

which is conventionally drawn

e

This all theoretical and forms the basis of how LISP operates, but
for the moment let us consider how we can make some sense out
of this new language.

Arithmetic

Arithmetic in LISP is performed by using identifiers rather than the
conventional infix operators, such as '+ and 'x. To add numbers
(atoms) together we use the PLUS command.

To perform the addition 7+5, we would write

(PLUS 7 5) which returns the answer 12, and to calculate the value
of 7+5+43+1, the correct LISP command is

(PLUS7531)

which returns the solution 16.

The reverse process to addition, namely subtraction, is achieved
using the DIFFERENCE command, which subtracts the second
argument from the first, i.e. 7-5 is given as

(DIFFERENCE 7 5)

which produces the output 2.

With the infix notation, the '—' sign is given a second meaning,
namely that of representing a negative quantity. In LISP there is
another identifier to remove this ambiguity, MINUS. So 7-5, which
can be written as 7+(-5), could take the form

(PLUS 7 (MINUS 5))

and this will also produce the result 2.

Multiplication is performed using the TIMES, so to calculate 7x5
the command
(TIMES 7 5)

is used to return 35, and to multiply, say, 7x5x3x1, the command
(TIMES7531)

is issued and returns the answer 105.

LISP only allows the use of integers and this can create some
difficulty when we wish to perform a division, eg. 7 /5 =14 or, in
a fractional form, 1 2/5. There are three different LISP commands
related to division, DIVIDE, QUOTIENT and REMAINDER, each of
which produces a different result.

DIVIDE returns a dotted pair (a special type of list), with the first
element the quotient and the second the remainder,
e.g. (DIVIDE75) --> (1.2)

QUOTIENT returns the whole number part of the solution and
ignores any fractional part,
e.g. (QUOTIENT7 5) --> 1

and REMAINDER returns the remainder after the division is
performed, e.g. (REMAINDER 7 5) --> 2

Note that LISP allows the use of all integers in the range — 32768
to 32767 and that an error will occur if the result of an arithmetical
calculation lies outside these limits.

Variables

In LISP the word ALPHA could represent either a variable or a
pieces of data, and to inform the computer of the difference, a
single quote can be used. Thus ALPHA would be the variable and
the hence if accessed, its value would be displayed, and 'ALPHA
would represent the word ALPHA as literal data. If a variable
ALPHA has not been given a value, LISP will regard its value as
UNDEFINED, which is a special identifier in the language
reserved for this use.

To give a variable a value the identifier SETQ should be used.
For example,
(SETQ ALPHA'(ABCDE))

will set the value of the variable ALPHA to be the list (AB CDE).
[Note the quote ('), which means that, (A B C D E) should not be
evaluated.] When the variable has been assigned it will display its
value if its name is typed without parentheses, i.e. ALPHA.

For example,
(SETQ TEN 10)
(TIMES TEN TEN)

will set the value of TEN to 10 and then calculate the value of TEN
squared, producing the answer 100. The value of the expression
to be assigned can also be calculated within the SETQ command
and so the instruction

(SETQ ANSWER (TIMES TEN TEN))

will assign the answer of the calculation, namely, 100 to the
variable ANSWER.

List Handling

There are two basic functions for retrieving values from a list,
namely CAR and CDR. IS-LISP allows either the command CAR or
HEAD to extract the first element of a list and either CDR or TAIL
to obtain the list which forms the remainder.

So for the list (X Y) we have
(CAR'XY))-->X
(CDR'XY)) > (V)

Consider the list defined in the SETQ instruction
(SETQ EXAMPLE'(A(12) (XY2)))

The box diagram for this list is
EXAMPLE

L;-D_' EQ:E_' @3_.,«[.?%_‘?3——» ngj—» [ZED—»N.L

1 2

Items can be extracted from the list EXAMPLE using the following:

(CAR EXAMPLE) returns the identifier A

(CDR EXAMPLE) returns the list with two members
(12)XYZ)

(CAR (CDR EXAMPLE) returns the list (1 2)

(CDR (CDR EXAMPLE) returns the list ((X Y Z))

(CAR (CAR (CDR EXAMPLE))) returns the identifier 1
IS-LISP allows the user to shorten these statements by writing

(CAAR EXAMPLE) instead of (CAR (CAR
EXAMPLE))

(CDDR EXAMPLE) instead of (CDR (CDR
EXAMPLE))

(CADR EXAMPLE) instead of (CAR (CDR
EXAMPLE))

(CAAAR EXAMPLE) instead of (CAR (CAR
(CAR EXAMPLE)))

(CADAR EXAMPLE) instead of (CAR (CDR
(CAR EXAMPLE)))

for any combination of up to three of the CAR or CDR instructions.

The identifier T

The special identifier T is the value returned when a Boolean
functon is evaluated to be true.

For example,

(NULL NIL) =->T since NIL is ()
(ATOM 3) ->T since 3 is an atom
(EQ55) ->T since5 =5

Decision Making

In BASIC decision making is usually performed with
IF. . .THEN .. .ELSE; which is employed in the following way.

IF <predicate.] > THEN <expression.1 >
ELSE IF <predicate.2> THEN <expression.2>
ELSE IF <predicate.3> THEN <expression.3>

ELSE <otherwise-expressibn>

In LISP this simply becomes
(COND (<predicate.l> <expression.1>)
(<predicate.2> <expression.2>)

(T <otherwise-expression>))

where T is the special identifier used to represent a true
statement. Thus the COND function works by evaulating each
predicate in turn until it finds one that is true. When this occurs it
evaulates the corresponding expression and returns that its value.

Example

(COND ((ATOM '(XY)) (TIMES 4 9))
{((ATOM 4) (TIMES § 8))
(T (TIMES 6 7)))

Here, since '(X'Y) is a list and not an atom, the first predicate
returns NIL and is ignored. The second predicate, however, is
true, since 4 is an atom, and so the result of (TIMES 5 8), i.e. 40, is
returned as the value of the statement.

Looping
Repetition of a group of expressions in LISP is obtained by using
the LOOP command. So the following statement

(LOOP(PRINT(PLUS 7 5))
(PRINT(DIFFERENCE 7 5)))

produces a loop which displays 12 then 2 then 12 . . . until the
STOP key is pressed. A more useful use of the LOOP facility is to
perform a sequence of events until some terminating condition is
satisfied, and to do this the function WHILE or UNTIL is used.

When a loop contains either ¢ WHILE or an UNTIL statement, it

10

will continue to be executed as long as a WHILE predicate yields
T, or an UNTIL predicate is not NIL.

Set the value of the variable C to be 7 by using the command
(SETQ C7) and set A to be 0 using
(SETQ A0)

Then the use the loop

(LOOP (WHILE (GREATERP C0) A)
(SETQ A (PLUSAC))
(SETQ C (SUBI1 C)))

This will return the value of 7+6+5+4+3+2+1=28, since the loop is
repeated all the time that C>0.

Alternatively, set the value of C to be 0 by using the command
(SETQ C0) and reset A to be 0 using
(SETQAOQ)

Then use the loop

(LOOP (UNTIL (EQ C8) A)
(SETQ C (PLUS A C))
(SETQ C (ADDI C)))

which produces the answer to 1+2+3+4+5+6+7=28, since the
loop is repeated until C=8.

Chapter 3
INPUT/OUTPUT

The most important commands in any language are the input/
output functions, as without these we would not be able to enter
any values or obtain the results of our calculations.

Input Syntax

The most common way of getting data/program into LISP is by
using the READ function. This will allow dotted pairs, lists,
variables and numbers in the range -32768 to 32767 to be entered
via the current input channel. When the system is first switched on
the input channel is number ‘0’ connected to the keyboard device,
however this can be changed by using the OPEN and RDS
commands, as explained in Chapter 6.

Note that if a "% character is encountered while reading then
everything up to the next end of line is treated as a comment and
ignored.

The syntax of the input of identifiers is such that the computer will
accept the characters A....Z a...z 0...9 and the following
special characters.

- MINUS —UNDERSCORE = EQUALS

. COMMA . SEMICOLON COLON

[LEFT SQUARE BRACKET * ASTERISK & AMPERSAND

$ DOLLAR ~ TWIDDLES # HASH

@ AT SIGN SLASH ? QUESTION MARK
+ PLUS SIGN | VERTICAL BAR \ CURLY BRACKET
1 UP ARROW < LESS THAN > GREATER THAN
\BACKSLASH

For example, A?BC, ::><:<-40;, + are all legal identifiers.

All other characters must be preceded by the escape character '
if they are to be included in an indentifier. Normally each left
bracket “(" must be closed by a matching right bracket)",
however, the “superbracket”" “]" can be used to close all open left
brackets. For example:

12

(DEFUN SQUARE (X) (TIMES X X]

The usual way to quote identifier is by preceeding them with the '
character: e.g. 'ABC. However an alternative is to surround the
identifier with double quotes: e.g. "ABC". This is an easy way to
get unusual characters like spaces into identifiers.

e.g. (PRINTC "A B")

Output Format

Output is generally produced by using the four print statements
PRIN, PRINC, PRINT, PRINTC.

There are two different formats: the PRIN type and the PRINC
type. With PRIN the output will be suitable to be read back in
again using READ, and identifiers will be escaped with ' where
appropriate. However, the PRINC type instructions do not escape
identifiers but produce them as given.

An alternative way of printing things out is with the SPRINT
function, in which items are printed on one line where convenient
or otherwise in the form:

(<function-name>
<arg 1>
<arg 2>
<arg 3>

éérg n>)
When the definition has been produced SPRINT will print two
blank lines and return the value NIL.

Chapter 4
DEFINING FUNCTIONS

As previously mentioned, LISP is a very flexible language which
can be expanded to suit the needs of the individual user.

When we first enter the LISP environment we have a series of
functions that are already defined and which can be called by
simply typing the appropriate function name

e.g. (PLUS4T)

The function ‘PLUS' has been defined as part of the LISP
interpreter and has the effect of causing the ‘evaluator' to find the
sum of the two numbers 4 and 7. On occasions it is highly likely
that we will want to use some function that has not been pre-
defined and in such a case it is necessary to define it ourselves by
using the ‘'DEFUN' command.

The syntax of the command is:
(DEFUN NAME (PARAMETERS) (BODY))

where NAME represents the name by which the function can be
called;
PARAMETERS are the values passed to the function; and
BODY consists of one or more previously defined LISP
functions.

EXAMPLE 1
Consider a situation in which the value of 2x+3y has to be
evaluated several times during the operation of a program. It

would be possible to use the following section of code each time
that the operation was required:

(PLUS (TIMES 2 X) (TIMES 3 Y))
This obviously takes a long time to enter and it would be much

better if we had a single function to perform the operation. This
could be achieved using the statement.

14

(DEFUN OPERATE (P Q) (PLUS (TIMES 2 P) (TIMES 3 Q)))
The LISP interpreter would then reply with
(LAMBDA (P Q) (PLUS (TIMES 2 P) (TIMES 3 Q)))

indicating that the function had successfully been defined.
If we now wished to evaluate 2x+3y, we would simply enter
(OPERATE x y)

The values of 'x' and 'y would be passed to 'p' and 'q’ in the
function which would then be calculated with the result being
returned by the evaluator.

e.g. (OPERATE 4 5) --> 23

The use of the function in this way leads to a very structured fgym
of programming known as the ‘'TOP-DOWN' approach, in which
one function is defined that can then be used as part of a definition
for a second function that in turn can be used as part of a
definition for a third and so on, and it is in this way that most LISP
programs are written.

EXAMPLE 2

Consider the problem of defining a secoud tunction ‘OPERATE2',
which will calculate 3(2X+3Y). This second function could be
defined very easily by making use the first function ‘OPERATE),

Le. (DEFUN OPERATE2 (P Q) (TIMES 3 (OPERATE P Q)))

The value of 3(2X+3Y) could then be calculated by using the
single function call

(OPERATE2 X 'Y)

Recursion

Recursion is a facility available to the LISP programmer, which
gives enormous flexibility in the construction of programs. By
using recursion it is possible to define a function that repeatedly

15

calls itself until a certain condition is attained. It is very similar in
action to a standard LOOP, but generally results in the production
of shorter and more efficient code.

EXAMPLE

Consider the problem of defining a recurring function which takes
a LIST (A B C D E) and finds the number of atoms within the list.
This could be achieved as follows:

(DEFUN LEN (X)
(COND
((ATOM X) 0)
(T (ADDI (LEN (CDR X]

Optional Arguments

We can define a function that may be called with (say) one or two
arguments:

(DEFUN ADDON (A (B.2))
(PLUS A B))

Here the first argument must be supplied while the second is
optional — if it is not supplied then it takes the value of 2.

e.g. (ADDON 4 8) --> 12
(ADDON 5) --> 17

A function can have any number of ordinary and optional
arguments, with the restriction that all the optional ones must
follow the ordinary ones.

Note that the default value (the number 2 in the above example) is
evaluated if the parameter is not supplied, so the example could
just as well have been written:

(DEFUN ADDON (A (B. (PLUS 1 1)))
(PLUS A B))

Local Variables
If a function is defined with say | ordinary argument and 2
optional arguments:

eg. (DEFUN A-FUN (A(B. 1) (C.NIL)) . ..)

and then always called with just one argument then the variables
B and C are effectively local variables: they can be used as
“temporary storage’ within A-FUN and disappear when the
function returns.

Editing Functions

When writing a LISP program you will often find a mistake and
need to change the definition of a function. For example suppose
we type In:

(DEFUN SQUARE (X) (TIMES X Y))

accidently typing a Y instead of an X.

To edit the function SQUARE we type:

(FEDIT SQUARE)

the screen will be cleared and we will see:

(LAMBDA (X) (TIMES X Y))

this is the machine's representation of the function: the word
DEFUN and the name of the function have been replaced by the
word LAMBDA.

The edit the function we move the cursor to the Y as normal and
type an X. When we have finished our corrections we press the
ESCAPE key. SQUARE is now redefined to its correct form.

If an error is detected while reading in the new definition (for
example excess " or)", or end of file which means too few right
brackets) the error message is displayed at the top of the screen

for a few seconds. This then disappears and the cursor returns to
allow the error to be corrected.

Chapter 5
SAVING and LOADING

The SAVE and LOAD commands allow you to transfer the state of
the system to cassette so that it can be used at a later time. Before
attempting to save the system you should ensure that a blank
cassette is ready for data transfer and that the leads from the
output sockets of your Enterprise microcomputer are connected to
the 'MIC' and 'REM' sockets of your tape recorder.

You need a filename for the current state of the system and if this
is, say, TUESDAY then issuing the command.

(SAVE "TUESDAY")

will cause this state to be saved onto cassette, ready to be loaded
at a later time. The reloading of the state is achieved simply by
issuing the command

(LOAD 'TUESDAY")

and then all the user defined expressions will be reloaded into the
computer's memory. Remember to connect the 'EAR' and 'REM'
sockets on the tape recorder to the input sockets of the Enterprise.

NOTE

When a new file is loaded from cassette, any information currently
in the computer will be overwritten. If this information is important,
however, then it should first be saved using the SAVE function,
described above.

Chapter 6
EXOS

EXOS is the extendible operating system for the Enterprise
microcomputer. It provides an interface between IS-LISP and the
hardware of the machine. The main features of EXOS are a
channel-based input/output (I/O) system and sophisticated
memory mangement facilities. The I/O system allows device-
independent communications with a range of built-in devices, as
well as any additional device drivers which may be attached.

The built-in devices are:

1. Video driver providing text and graphics handling.

2. Keyboard handler providing joystick, autorepeat and
programmable function keys.

Screen editor with word processing capachilities.
Comprehensive stereo sound generator.
Cassette tape.

Centronics compatible parallel interface.

RS232 type serial interface.
Networking interface.

N o G W

Many features of the system are controlled by a number of single
byte values called "EXOS variables". A full list of these variables
can be found in appendix 1.

The beginner to programming in LISP will not be too concerned
about communications' with EXOS. However, there will come a
time when such communication will be required and the
remainder of this chapter will consider how this can be achieved.

Screen Editor

When the machine is first switched on with the IS-LISP cartridge in
place, the user is in communication with the ‘screen editor’, which
in turn communicates with the LISP interpreter. This allows the
user to move the cursor around the screen, and scroll both up and
down.

19

Channels

As was mentioned in the beginning of this chapter, all I/O takes
place through channels. LISP has been designed so that most
simple things can be done without any knowledge of this fact.
However, full use of the system can only be made with an
understanding of how these channels and their associated EXOS
variables can be manipulated.

When the machine is first switched on, the following channels are
opened automatically:

CHANNEL 0 EDITOR

CHANNEL } VIDEO (GRAPHICS ONLY) - opened by the
GRAPHICS command

CHANNEL 2 VIDEO (TEXT ONLY)

CHANNEL 3 SOUND

CHANNEL 5 KEYBOARD

And communications to the various devices will always take place
along these channels until for one reason or another they are
closed.

Channels 0,2,3 and 5 should be left alone. Unless there is a good
reason, they should not be closed.

New Channels

On occasions we may need to open a new channel to a device
driver so that communication can take place to some peripheral
other than those set up as default channels. There are two
functions to do this: OPEN and CREATE. For most purposes these
two are equivalent, however when opening a file on tape or disc,
CREATE will make a new file and OPEN will assume that the file
already exists.

EXAMPLE
Consider the problem of defining a function that will SPRINT some

function to a parallel printer. This can be overcome by using the
following section of code

20

(DEFUN SPRINTER (EXP)
(OPEN 10 "PRINTER:")
(WRS 10)

(SPRINT EXP)
(WRS 0)
(CLOSE 10))

This works by opening channel 10 to the parellel printer port and
then using the WRS 10 instruction to select 10 as the current
output stream. The function defined by the parameter 'EXP' is then
SPRINTed onto the printer, after which the output stream is
switched back to its default value and the channel is closed.

NOTE

When using channels it is easy to forget that the input or output
will automatically be sent to the default channels, as shown below,
and in order to redirect the commands SNDS, RDS, WRS and GRS
must be used.

DEVICE DEFAULT COMMAND
SOUND 3 SNDS
TEXT (INPUT) 0 RDS
TEXT (OUTPUT) 0 WRS
GRAPHICS 1 GRS
EXAMPLE

To Input from channel 12 we would require
(OPEN 12 “DEVICE:")
(RDS 12)

Filenames

When a channel is open we use a command such as
(OPEN 12 "<device>:<filename>.<extension>")
where <device>, <filename> and <extension> are all optional

The devices that can be used are listed below, and if no value is
given, the system will default to tape.

21

KEYBOARD: The Keyboard

VIDEO: Video screen device
EDITOR: Word processor device
PRINTER: Centronics port
SOUND: Sound device
SERIAL: RS232 port
NET: Network device
TAPE: Cassette device

TAPE FILE HANDLING

On occasions we may wish to save information or functions onto
tape without having to save the complete environment. This can
be achieved by defining a function such as:

(DEFUN FILE EXP)
(CREATE 11 "TAPE:RH")
(WRS 11)

(PRINT EXP)
(WRS 0)
(CLOSE 11))

When 'FILE' is called, the content of the parameter 'EXP' is saved
onto a FILE called 'RH'. This can then be used at some later date
by using a second function to extract the expression from the tape
file.

EXAMPLE

(DEFUN EXTRACT ((TEMP))
(OPEN 11 "TAPE:RH")

(RDS 11)

(SETQ TEMP (READ))

(RDS 0)

(CLOSE 11)

TEMP)

By typing (EXTRACT), the expression within the file ‘RH' will be
returned.

22

EXOS Commands

There are three LISP functions EXOS-READ, EXOS-WRITE and
EXOS-TOGGLE that can be used by the experienced
programmer to interrogate or change certain system variables.
Appendix 1 lists these variables, together with their locations, and
gives a brief description of what they are used for.

As an example of the use and importance of ‘EXOS-VARIABLES',
consider the problem of SPRINTing a function to a printer
connected to the RS232 serial port and operating at the speed of
1200 BAUD. An investigation of the LISP commands shows that
there is no function for changing the BAUD rate, but from
Appendix | we see that there is an associated EXOS variable
which can be used as follows:

(DEFUN SERPRINT (EXP)
(EXOS-WRITE 16 8) % Set BAUD rate to 1200
(OPEN 11 “SERIAL:")
(WRS 11)
(SPRINT EXP)
(WRS 0)
(CLOSE 11))

23

Chapter 1
INTERRUPT HANDLING

The Enterprise version of IS-LISP provides a special identifier,
which enables a LISP programmer (o write functions that utilize
the interrupt system.

When we first switch on the microcomputer, the variable
HANDLER is UNDEFINED, and if any software interrupt is
received, then a SOFTWARE INTERRUPT (ERROR 4) will be
produced. However, it is possible for the user to define some
function, such as FRED, with one argument, and make this the
interrupt HANDLER by typing:

(SETQ HANDLER 'FRED)

When a software interrupt is received, FRED will be called with
the interrupt type (see below) as its only argument.

EXAMPLE
If we define FRED as:

(DEFUN FRED (TYPE)
(COND
((EQ TYPE 24) (PRINTC "UNDEFINED FUNCTION")))
((EQ TYPE 48) (PRINTC "NETWORK INTERRUPT"))
((EQ TYPE 64) (PRINTC "TIME-OUT"))
(T NIL)))

we see that a simple function such as this can provide the user
several useful facilities:

1. A time facility.
2. An information facility when the network needs service.

3. The ability to interrupt the program by pressing (say) shift-F1
and then continue on as if nothing had happened.

The following table represents the values sent to HANDLER when
a software interrupt occurs:

24

CODE INTERRUPT CODE INTERRUPT
16 FUNCTION KEY 26 FUNCTION KEY 11
17 FUNCTION KEY 271 FUNCTION KEY 12
18 FUNCTION KEY 28 FUNCTION KEY 13
19 FUNCTION KEY 29 FUNCTION KEY 14
20 FUNCTION KEY 30 FUNCTION KEY 16
21 FUNCTION KEY 31 FUNCTION KEY 16
22 FUNCTION KEY 32 STOP KEY
23 FUNCTION KEY 33 ANY KEY
24 FUNCTION KEY 48 NETWORK
25 FUNCTION KEY 10 64 TIMER

(Function keys 9-16 are shifted function keys)

OOONO®U S WD —

Function Key Interrupts

If a function key is programmed with the null string (""" in LISP), it
will generate a software interrupt when pressed. When LISP
powers up, certain keys are preprogrammed to useful commands,
such as FEDIT, and the rest are set to the null string.

Stop Key Interrupt

If the EXOS variable STOP IRQ (number 8) is made non-zero,
then the stop key will just return a code like any other key,
effectively disabling the stop key. Otherwise, when the stop key is
pressed, software interrupt 32 is received.

Any Key Interrupt

If the EXOS variable KEY IRQ (number 9) is set to zero (default
value = 255), then when any key is pressed it will cause a software
interrupt 33, as well as returning the code.

Network Interrupt

When a message is received on the network a software interrupt
is usually generated (unless the EXOS variable NET IRQ
(number 19) is set to zero). This is useful as it enables the user to
read the message and then act upon it.

N.B. The EXOS variable ADDR NET (number 18) will then
contain the network channel from which the data is to be read.

25

Timer Interrupt

The EXOS variable TIMER (number 5) is usually set to zero. If,
however, it is made non-zero by using the EXOS-WRITE
command, then it will start to count down by one each second.
When it reaches zero, software interrupt 64 is generated. This can
be very useful in the production of on-screen timers, as shown
below.

EXAMPLE

The following section of code will produce a debugging aid.
When shift-F1 is pressed LISP will run the function DEBUG which
allows the user to type in any LISP expression which is then
evaluated and the result printed out. For example the values of
variables can be found by just typing in their names. When the
user has finished he types ‘BYE' and the program carries on
whatever it was doing before.

(SETQ HANDLER 'FRED)

(DEFUN FRED (TYPE)
(AND (EQ TYPE 24) (DEBUG)))

(DEFUN DEBUG ((INPUT))

(PRINTC “Lisp debugger - type BYE to leave")

(LOOP
(PRINTC “DEBUG>")
(LOOP (WHILE (ATOM (SETQ INPUT (ERRORSET
(READ))))))
(SETQ INPUT (CAR INPUT))
(UNTIL (EQ INPUT 'BYE)

(PRINTC "“***Leaving Debug"))

(ERRORSET (PRINT (EVAL INPUT)))))

Interrupt handling is a very powerful tool for the more
experienced programmer and it is possible to create complex
functions which can be brought into operation when a particular
software interrupt occurs.

N.B. Unfortunately LISP does not respond to interrupts while it is
waiting for the user to type something in. (i.e. while the cursor 1s
flashing).

26

Chapter 8
THE FUNCTIONS OF IS-LISP

This chapter contains an alphabetical list of the LISP functions,
explains their structure and operation, and gives some examples
of their use. Each function is identified as one of the following:

Subr - a ordinary function evaluating its arguments;
Fsubr - a function whose arguments are not
necessarily evaluated;

Id - an identifier with special significance in LISP,
Var - a system-provided variable.

Arguments for LISP functions are shown in brackets '<>', or
square brackets ‘[]', the latter being optional.

The result of the function is also given and thisis-a list (ie. (ab ¢
... 2)), a whole number in the range

-32768 to 32767, or the word ‘any’, which allows any LISP type as
the result

(ABS <number>) --> number Subr

This returns the absolute value of the argument.

e.g. (ABS 23) -->23
(ABS-19) --> 19

(ADDI1 <number>) --> number Subr
This returns the value of the argument plus one.

e.qg. (ADDI 23) --> 24
(AND <exprl> <expr2>...) --> NIL or any Fsubr
This evaluates its arguments in turn. Should one of them evaulate

to NIL, the function will return that value; otherwise, it will return
the value of the last argument.

27

e.g. (AND (NUMBERP 10 (ATOM ‘A B))) --> NIL
(AND (LISTP ‘(A B)) XYZ) --> XYZ

(APPEND <x> <y>) --> list Subr

If <x> and <y> are lists, this function returns the list obtained by
putting the elements in <y> after those in <x>.

(DEFUN APPEND (X Y)
(COND
(ATOMX)Y)
(T (CONS (CAR X) (APPEND (CDRX) Y]
e.g. (APPEND ‘(AB) 'CD)) -> (ABCD)

(APPLY <fn> <args>) --> any Subr

This returiis the value of the function <fn> with the list of
parameters <args>

e.g. (APPLY NUMBERP '(10)) --> T
(ASSOC <key> <a list>) --> NIL or (<key>. value) Subr

This searches the association list <a list> of dotted pairs for the
given key. If the search is successful, it returns (<key>. value) pair
is; otherwise, it returns NIL.

(DEFUN ASSOC (U ALIST)
(COND
((ATOM ALIST) NIL)
((ATOM (CAR ALIST) ERROR "BAD
ASSOCIATED LIST"))
((EQUAL U (CAAR ALIST)) (CAR ALIST))
(T (ASSOC U (CDR ALIST]

e.g. (ASSOC ‘A '(B2) (A.-3))) --> (A. -3)
(AT <row> <column>) --> NIL Subr

This moves the cursor on the current output channel to (<row>,
<column>).

28

e.g. (AT 10 20) --> NIL
(ATOM <x>) --> T or NIL Subr
This returns T if <x> is not a dotted pair.
e.g. (ATOM '(A.B)) --> NIL

(ATOM 'A) --> T

(ATOM 10) --> T

(ATOM CAR) -> T
AUTOLOAD Id
When EVAL is trying to evaluate an expression of the form

(<identifier> <args>)
and finds that <identifier> is UNDEFINED it usually results in an
error. However, the use may write an autoloader, which is a LISP
function that will be evaluated whenever the user attempts to call
an undefined function.
The autoloader can be set by using the command
(SETQ AUTOLOAD 'FRED)
The function FRED will then be called whenever an undefined
function is obtained with the name of the undefined function as its
single argument. This can be most useful in top-down
programming, as the upper level functions can be tested without
defining those at the lower level.
(BAND 2 <x> <y>) --> number Subr
This returns the bitwise AND of the two numbers <x>, <y> when
they are expressed in binary form.
eg.Since7=111and3 =11

(BAND2 7 3) -->3

(BEAM <exp>) --> NIL Subr

If <exp> is not NIL, then the beam at the current graphics channel

29

is switched on; otherwise, it is swtiched off.

e.g. (BEAM NIL) --> NIL to switch beam off
(BEAM T) --> NIL to switch beam on

BLANK Var
This represents the space character, "

e.g. (PRINC BLANK) displays a blank character
(BNOT <number>) --> number Subr

This returns the bitwise NOT of the number, i.e. the value of x
becomes (—x) —1.

eg. (BNOT7T)--> -8
(BNOT -3) --> 2

(BORDER <number>) --> NIL Subr

If0 < (number) < 255, this will change the border to the colour
represented by <number>.

e.g. (BORDER 42)
(BOR2 <x> <y> --> number Subr
This returns the bitwise OR of the two numbers <x>, <y>.

eg. Since7 =111 and3 =11
(BOR273) -->17

(BXOR2 <x> <y>) --> number Subr

This returns the bitwise exclusive — OR of the two numbers
<xX>, <y>.

eqg Since7 =111 and3 =11
(BXOR273) -->4

(CAPTURE <old> <new>) --> NIL Subr

30

This redirects all read operations from the <old> channel to the
<new> channel.

e.g. (CAPTURE 34 102) --> NIL
(CAR <x>) --> any Subr

This returns the first field of the dotted pair <x>. Error 25 occurs if
<x> is not a dotted pair. A synonym for CAR is HEAD. The CAR
function can be extended by using abbreviations such as CAAR or
CAAAR to represent CAR CAR and CAR CAR CAR respectively.

eg. (CAR'(AB)) --> A
(CAR'((A.B).C)) --> (AB)
(CAAR'((AB).C)-->A
(CDR <x>) --> any Subr
This returns the second field of the dotted pair <x>. Error 25
occurs if <x> is not a dotted pair. A synonym for CDR is TAIL. The
CDR function can be extended by using abbreviations such as
CDDR or CDDDR to represent CDR CDR and CDR CDR CDR
respectively.
eg. (CDR'(AB)) ->B
(CDR'(A.(B.C))) --> (B.C)
(CDDR'(A.(BO)) -->C
(CHARACTER <number>) --> id Subr

This returns the identifier defined by the ASCII code <number>. It
is the LISP equivalent of CHR$ in BASIC.

e.g. (CHARACTER65) --> A
(CHARP <x>) --> T or NIL Subr
This returns T if <x> is an identifier and NIL otherwise.

e.g. (CHARP'A) -> T
(CHARP 10) --> NIL

31

(CHARS <exp>) --> number Subr
This returns the number of characters an atom would generate if it
were printed. The value returned depends on the type of the
argument.
list--> 0
identifier --> the number of characters in the print name
(equivalent to the BASIC LEN)
number --> 6
codepointer --> 10
e.g. (CHARS'A) --> 1
(CHARS 10) --> 6
(CHARS CAR) --> 10
(CLEAR) --> NIL Subr
This clears the video page of the current graphics channel
(CLOSE <number>) --> <number> Subr

If <number> is a valid channel number of an open file, then the
file is closed.

e.g. (CLOSE 1) will close the file on channel 1
(CODEP <x>) --> T or NIL Subr
This returns T if <x> is a codepointer, otherwise, it returns NIL.

e.g. (CODEP (AB)) --> NIL
(CODEP CAR) --> T

(COMMENT <anyl> <any2> ...) --> NIL Fsubr
This is used to place textual comments in an expression.
e.g. (COMMENT THIS WILL BE IGNORED) --> NIL

(COND (predicate action) (predicate action) ...) --> ANY Subr

32

This is a method for control structure and is similar to the BASIC
IF THEN ELSE command.

Le. IF <predl> THEN <expl>
ELSE IF <pred2> THEN <exp2>

ﬁLSE <otherwise exp>
is written in LISP as
(COND (<predl> <expl>)
(<pred2> <exp2>)
... (T<otherwise exp>))
(COND ((EQ A 3) (PRINT "A=3"))
((EQ A 4) (PRINT "A=4"))
(T NIL))
(CONS <car part> <cdr part>) --> list Subr

This creates the new list from the two given expressions.

e.g. (CONS'A'B) --> (AB)
(CONS'A (CONS 'B NIL)) --> (A B)

(CONSTANTP <x>) --> T or NIL Subr

This returns T if <x> is a number or codepointer; otherwise, it
returns NIL.

(DEFUN CONSTANTP (OR (NUMBERP X) (CODEP X]

e.g. (CONSTANTP 10) --> T
(CONSTANTP'A) --> NIL

(COPY <x>) --> <x> Subr
This returns a copy of <x>.
(DEFUN COPY (X)

(COND
((ATOM X) X)

33

(T (CONS (COPY (CAR X)) ((COPY (CDR X]
e.g. (COPY '(ABCDE)) --> (ABCDE)
(CREATE <number> <filename>) --> <number> . Subr

This function opens <filename> on channel <number>. It is
equivalent to the IS-BASIC OPEN command with "Access Output”
specified — see the BASIC manual.

e.g. (CREATE 15 "NAME")
CRLF Var
The value of CRLF is a carriage return/line feed.
(CURSOR <exp>) --> NIL Subr

If <exp> is not NIL, then the cursor on the current output channel
is switched on; otherwise, it is turned off.

e.g. (CURSOR NIL) --> NIL to turn cursor off
(CURSOR T) --> NIL to turn cursor on

(DEFLIST <dlist> <ind>) --> list Subr

The argument <dlist> is a list in which each element is a two-
element list; (id prop). Each identifier in the dlist has its prop
placed on its property list under the indicator <ind>. A list of the
<ind>s is returned.

(DEFIN DEFLIST (U IND)
(COND
((ATOM U) NIL)
(T (PUT (CAAR U) IND (CADAR U))
(CONS (CAAR U) (DEFLIST (CDR U) IND)))))

e.g. (DEFLIST '((V DD) (H RG)) 'NAME) --> (V H)
which is the same as:
(PUT 'V'NAME 'DD) --> DD
(PUT 'H'NAME 'RC) --> RG

and can be retrieved by

34

(GET 'V'NAME) --> DD

(DEFMAC <name> <parameter> <body>...) -->
<name> Fsubr

This is the usual way of defining a macro.

eg. (DEFMACIFX
(LIST
“COND"
(LIST (CADR X) (CADDR X))
(LIST T (CAR (CDDDR X)))))

This defines a macro IF which is called with three arguments:
eg. (IFABC)

‘A’ is evaluated: if it is true then 'B' is returned, otherwise 'C' is
returned.

e.g. (IF (ZEROP X) 4 5) --> 4 if X=0
(IF (ZEROP X) 4 5) --> 5 if X<>0

(DEFUN <name> <parameters> <body>...) -->
<name> Fsubr

This is the way of defining a function.

e.g. (DEFUN SQUARE (X) (TIMES2 X X)) --> SQUARE
(DEFVIDEO <+mode> <g-mode> <g-col>) --> NIL Subr
This defines the parameters to be used only by the TEXT and
GRAPHICS functions:
<+mode> should be either 40 or 80 and is the number of columns
in a screen.
<g-mode> is one of the following: 1 high-resolution graphics

5 low-resolution graphics
15 attribute mode

35

<g-col> is one of the following: 0 for the two-colour mode
1 for the four-colour mode
2 for the 16-colour mode
3 for the 250-colour mode
e.g. (DEFVIDEO 40 1 0) --> NIL
(DEL <ch>) --> <ch> Subr

This closes EXOS channel <ch>. For most devices it is equivalent
to CLOSE.

eg. (DEL1)-->1
(DELETE <x> <y>) --> list Subr
This returns the list <y> with the first occurrence of <x> deleted.
(DEFUN DELETE (A L)
(COND
((ATOM L) L)
((EQUAL A (CAR L)) (CDR 1))
(T (CONS (CAR L) (DELETE A (CDR L))))))
eg. (DELETE'A'(BACA)-->(BCA)
(DIFFERENCE <x> <y>) --> number Subr

This subtracts the number y from the number x and returns the
result

(e.g. (DIFFERENCE 7 3) --> 4
(DIGIT <x>) --> T or NIL Subr

This returns T if <x> is an identifier with a digit (0-9) as the first
character in its print-name; otherwise, its value is NIL.

e.g. (DIGIT 'A) --> NIL
(DIGIT '0A) --> T

36

(DISPLAY <chan> <from> <ln> <at>) --> NIL Subr
This displays <1n> lines, starting at line <from> of the page on
channel <chan>. They are displayed from line <at> onwards on
the screen. All arguments should be integers.
e.g. (DISPLAY 4 107 1) --> NIL
will display lines 10 to 16 of the page on channel 4,
starting at the top line of the screen.
(DIVIDE <x> <y>) --> (quo.rem) Subr

The number <x> is divided by <y> and the (quotient.remainder)
pair is returned.

e.g. (DIVIDE73) --> (2.1)
DOLLAR Var
This is the dollar ($) character.
(EDIT <exp>) --> any Subr
This creates a text page and displays <exp> using SPRINT. You
can then edit the <exp> by using all of the word processor
facilities, pressing ‘ESCAPE! to finish. The modified structure is-
then read back and returned. The usual way to edit functions is
using the FEDIT function (qv).
(ELLIPSE <x> <y>) --> NIL Subr
This draws an ellipse centred on the current beam position on the
current graphics channel in the current ink colour. <x> and <y>
specify the x-radius and y-radius respectively.

e.g. (ELLIPSE 200 100) --> NIL

(ENVELOPE <en> <er> [<cp> <cl> <cl> <pd>]) -->
NIL Fsubr

A full description of envelope can be found in the BASIC manual
<en> is the envelope number (0-250)

37

<er> is the number of phases before release (255 for no release)
The parameters in square brackets define a phase and can be
repeated up to 12 times.

<cp> - the change in pitch in semitones

<cl> - change in left volume (-63. . .63)

<cr> - change in right volume -63. . .63)

<pd> - phase duration in 1/50th second

e.g. (ENVELOPE 1 1 10 30 20 10) --> NIL
(EOF) --> T or NIL Subr

This tests to see if the end of a file has been reached on the
current input channel. Its value is T if it has, and NIL otherwise.

(EQ <expl> <exp2>) --> T or NIL Subr

This returns T if one of the following is true about its arguments.
1. They are the same identifier.
2. They are equal numbers.
3. They are identical lists in LISP memory.

eg. (EQ1'A)--> NIL
(EQ1010)-->T
(EQ'(AB)'(AB)) --> NIL

(EQUAL <expl> <exp2>) --> T or NIL Subr
This tests to see if two general expressions are equal

(DEFUN EQUAL (X Y)
(COND
(EQXYV)T)
((OR (ATOM X) (ATOM Y)) NIL)
((EQUAL (CAR X) (CARY)) (EQUAL (CDR X) (CDRY)))
(T NIL)))

eg. (EQUAL1 'A) --> NIL
(EQUAL'(AB)'(AB)) -->T

(ERROR <number>) --> no value Subr

38

This causes LISP error number <number> to be triggered.
(ERRORSET <any>) --> number or any Fsubr
This evaluates the argument. If no error occurs in the evaluation of
<any>, it returns this value as a dotted pair with NIL; otherwise, it
returns the error number.

e.g. (ERRORSET (ATOM 10)) --> (T)
(ERRORSET (AB)) --> 17

(EVAL <any>) --> <any> Subr

This causes a second evaluation of its argument to be performed.
eg. (EVAL'(CAR'(AB)) --> A

(EVLIS <list>) --> list Subr

This evaluates each member of the list and returns a list of the
results.

(DEFUN EVLIS (ARGS)
(COND
((ATOM ARGS) NIL)
(T (CONS (EVAL (CAR ARGS))
(EVLIS (CDR ARGS))))))
e.g. (EVLIS'((CHARP 'Z) (EQ'A 'B))) --> (T NIL)
(EXOS-READ <var>) --> <number> Subr

This returns the current value of the EXOS variable number
<var>.

e.g. (EXOS-READ 10) --} 234
(EXOS-TOGGLE <var>) --> <number> Subr
This acts like a switch and toggles the appropriate EXOS variable.

The value returned by the function is the ones complement of its
current status.

39

e.g. (EXOS-TOGGLE 8) --> 0
(EXOS-WRITE <var> <val>) --> <val> Subr
This sets the EXOS variable number <var> to the value <val>.
e.g. (EXOS-WRITE 10 234) --> 234
(EXPAND <list> <function>) --> list Subr
<function> should be a function requiring two arguments. If there
are n elements in the list L(1), L(2), ..., L(n), then the value of the
resulting list is:
(<function> L(1) (<function> L(2) (... (<function> L(n-1) L(n))
D))
(DEFUN EXPAND (L FN)
(COND
((ATOM (CDR L)) (CAR L))
(T (CONS FN
(CONS (CAR L)
(CONS (EXPAND (CDR L) FN) NIL)))))

e.g. (EXPAND '(A B CD) 'PLUS2) --> (PLUS2 A
(PLUS2 B (PLUS2 C D)))

(EXPANDMACRO <macro function> <test>) --> any Subr

This is a useful debugging tool to be used when working with
macros.

e.g. (EXPANDMACRO IF '(IF(EQ X 3) 4 5))
(see the entry for DEFMAC for the definition of IF)

(EXPLODE <id>) --> list Subr
This returns a list of the characters in the print name of <id>.

e.g. (EXPLODE 'ABCDE) --> (ABCDE)
(EXPLODE ") --> NIL

40

(FEDIT <fun>) --> NIL Fsubr
This is similar to EDIT, but allows you to alter the function <fun>.
Press 'ESCAPE when the editing is finished to re-define the
function.
(FKEY <kn> <str>) --> NIL Subr
This sets function key <kn> to be the string <str>, of up to 23
characters.
<kn> is in the range 1-16: 9-16 are shifted 1-8.

e.g. (FKEY 1 “I'm now programmed!") --> NIL
(FLAG <idlist> <ind>) --> NIL Subr
This marks each identifier in the list with the flag <ind>.

e.g. (FLAG'(A B CD) 'FINE) --> NIL
(FLAGP <id> <ind>) --> T or NIL Subr

This is used to detect if the identifier <id> has been flagged with
the indicator <ind>.

e.g. (FLAGP'A 'FINE) --> T or NIL
(FLATTEN <x>) --> list Subr
This removes all of the subtree structure of <x>.
(DEFUN FLATTEN (X)
(COND
((NUL X) NIL)
((ATOM X) (CONS X NIL))
(T (NCONC (FLATTEN (CAR X))) (FLATTEN (CDR X))
e.g. (FLATTEN '(A((B)) NIL (CD) E)) -> (AB CDE
(FLUSH <ch>) --> NIL Subr

This routine flushes the network channel <ch>

41

e.g. (FLUSH 17) --> NIL
(FSUBRP <X>) --> T or NIL Fsubr

This returns T if <x> is a codepointer to an Fsubr and NIL
otherwise.

e.g. (FSUBRP COND) --> T
(FSUBRP'A) --> NIL

FUNARG Id

FUNARG has the value UNDEFINED. It has a special significance
within the interpreter, denoting FUNARG closures.

(FUNCTION <in>) --> (FUNARG <fn> environment Fsubr
This acts just like QUOTE <qu> but should only be applied to
functions. When the resulting form (called a FUNARG closure) is
applied to some arguments all free variables will have the same
values as they did at the time the closure was created.
(GENSYM) --> id Subr
This returns a unique identifier of the form G0000, G0001, etc.

e.g. (GENSYM) --> G0042
(GET <id> <ind>) --> any Subr

This returns the property on the list of identifier <id> under the
indicator <ind>, or NIL if there is non stored.

e.g. (GET 'V'NAME) --> DD
(GETCHAR) Subr
A single character is read from the current input stream and
returned. Note that this is not the same as INKEY$ in BASIC. The
LISP equivalent of INKEYS is:

(DEFUN INKEY ()
(RDS 5)

42

(PROGI (AND (ZEROP (READSTATUS)) (GETCHAR))
(RDS0)))

e.g. (GETCHAR) -->]

(GRAPHICS) --> NIL Subr
If a graphics channel exists, then it is displayed on the screen;
otherwise, a standard graphics page is opened and displayed in

the top 20 lines of the screen. The graphics mode and colours are
defined by the DEFVIDEO command.

(GREATERP <x> <y>) --> T or NIL Subr

T is returned if number <x> is greater than number <y>;
otherwise, NIL is returned.

e.g. (GREATERP73) --> T

(GRS <ch>) --> <number> Subr

This makes <ch> the current graphics channel, returning the
previous one.

eg. (GRS 12) --> 42

HANDLER Id
When LISP is executing it may receive ‘software interrupts’ from
the operating system. The variable HANDLER can be set so that

the system performs some function when an interrupt occurs. See
chapter 7.

(HEAD <x>) --> any Subr
This function is identical to car.

e.g. (HEAD'AB)) --> A

43

(IMPLODE <idlist>) --> id Subr

This returns the identifier obtained by concatenating the atoms in
<idlist>.

e.g. (IMPLODE '(A B CD EF G)) --> ABCDEFG
(IN <ioport>) --> number Subr

This returns the value obtained from Z80 input/output port
<ioport>.

eg. (IN129) ->3
(INK <col>) --> NIL Subr
This changes the foreground colour of the current graphics
channel to the 'logical' colour <col> selected from the page's
PALETTE.

e.g. (INK 10) --> NIL
(INTERN <id>) --> <id> Subr

This searches the oblist for <id>: if it is successful, then <id> is
added to the olbist and returned.

e.g. (INTERN 'WRITE) --> WRITE
(JOY <num>) --> number Subr

This returns the status of the joystick number <num> as defined in
the BASIC manual

eg. JOY 1) > 17
LAMBDA d

This has special significance within the interpreter denoting a
lambda expression.

44

(LAST <x>) --> any Subr
The returns the last member of the list <x>.
(DEFUN LAST (X)
(COND
((ATOM X) X)
((NULL (CDR X)) (CAR X))
(T (LAST (CDR X)))))
eqg. (LAST'ABC)) ->C
(LENGTH <x>) --> number Subr
This returns the top level length of the list <x>.
(DEFUN LENGTH (X)
(COND
((ATOM X) 0)
(T (ADDI (LENGTH (CDR X))))))

eg. (LENGTH'A) -->0
(LENGTH'(AB (CD) E)) --> 4

(LESSP <x> <y>) --> T or NIL Subr

This returns T if number <x> is strictly less than number <y>;
otherwise, it returns NIL.

e.g. (LESSP 7 3) --> NIL
(LINELENGTH <any>) --> number Subr
This affects the length of a line as used by SPRINT.

e.g. (LINELENGTH 60) --> 64 (the previous value)
(LIST <argl> <arg2>...) --> list Subr
This returns the list (<argl> <arg2>...).

e.g. (LIST'A’B’-9°C) --> (AB-9C)

45

(LISTP <x>) --> T or NIL Subr
This returns T if <x> is a dotted pair; otherwise, it returns NIL.

egq. (LISTP'(AB) -->T
(LITER <x>) --> T or NIL Subr

This returns T if <x> is an identifier whose print name has a letter
as its first character; otherwise, it returns NIL.

eqg, (LITER'A) --> T
(LITER "0A) -->NIL

(LOAD <filename>) Subr
This will load a memory image saved using the function SAVE. it
will also load an ASCII file consisting of a series of LISP
expressions.

e.g. (LOAD "NAME")
(LOOP <actionl > <action2> .. .) --> any Subr

This will keep executing <actionl> <action2> . .. until a clause in
a WHILE or UNTIL becomes true/false.

e.g. (LOOP (PRIN "*) (SETQ CT(SUB! CT)) (UNTIL
(ZEROP CT))) will produce a row of * if
prceeded by (SETQ CT <number>)
LPAR Var
The value of LPAR is the character “(".
MACRO 1d

This has special significance within the interpreter, denoting a
Macro expression.

(DEFUN MAP (X FN)
(LOCP

46

(UNTIL (ATOM X) NIL)
(FNX)
(SETQ X (CDR X))))

e.g. (MAP'ABC D) '(LAMBDA (x) (PRIN x))) --> NIL
will produce the output (A B C D) (BCD) (CD)
(D) NIL

(MAPC <x> <fn>) --> NIL Subr

This applies the function <fn> to each member of the list <x> in
turn. Then it returns NIL.

(DEFUN MAPC (X FN)
(LOOP
(UNTIL (ATOM X) NIL)
(FN (CAR X))
(SETQ X (CDR X))))

e.g. (MAPC'(A B CD) '(LAMBDA (x) PRIN (x)))
--> NIL
will produce the output ABCD NIL

(MAPCAN <x> <fn>) --> list Subr

It is required that every application of <fn> produces a list.
MAPCAN returns the concatenation of the outpuit lists for each of
the elements of <x> taken in turn.

(DEFUN MAPCAN (X FN)
(COND
((ATOM X) NIL)
(T (NCONC (FN (CAR X)) (MAPCAN (CDR X) FN)))))

2.g. (MAPCAN '(A B C D) '(LAMBDA (x) (LIST xx)))
>
(AABBCCDD)

(MAPCAR <x> <fn>) --> list Subr

This returns the list of the results of applying <fn> to every
member of <x> in turn.

41

(DEFUN MAPCAR (X FN)
(COND
((ATOM X) NIL)
(T (CONS (FN (CAR X)) (MAPCAR (CDR X) FN)))))

e.g. (MAPCAR'A B C D) '(LAMBDA (x) (CONC x x)))
->
((A.-A) (BB) (C.C) (D.D)

(MAPCON <x> <fn>) --> list Subr
It is required that each application <fn> will produce a list.
MAPCON applies <fn> to <x>, (CDR <x>), CDDR <x>, ... until

the list is exhausted and returns the list constructed by
concatenating the results.

(DEFUN MAPCON (X FN)
(COND
((ATOM X) NIL)
(T (NCONC (FN X) (MAPCON (CDR X) FN)))))

e.g. (MAPCON'(A B CD) '(LAMBDA (x) (LIST
(CONS1x)-->((1ABCD(I1BCD) (1 CD) (1 Dy

(MAPLIST <x> <fn>) --> list Subr

This returns the list of the results of applying <fn> to <x>, (CDR
<x>, (CDDR <x>), . .. until the list is exhausted.

(DEFUN MAPLIST (X FN)
(COND
((ATOM X) NIL)
(T (CONS (FN X) (MAPLIST (CDR X) FN)))))

e.g. (MAPLIST '(A B C D) (LAMBDA (x) (LENGTH
X)) -->(4321)

(MAX2 <x> <y>) --> number Subr
This returns the larger of the two numbers <x> and <y>

eqg (MAX2173) -1

48

(MEMBER <x> <y>) --> NIL or list Subr

This returns NIL if <x> is not a member of the list <y>; otherwise,
it returns the remainder of <y>, starting at <x>.

(DEFUN MEMBER (X Y)
(COND
((ATOMY) NIL)
((EQUALX (CARY)Y)
(T (MEMBER X (CDR Y)))))

eg. (MEMBER'A'(BCADE)-->(ADE)
(MEMQ <x> <y>) --> NIL or list Subr

This is the same as MEMBER but uses EQ instead of EQUAL for
the comparison.

(DEFUN MEMQ (X Y)
(COND
((ATOM Y) NIL)
(EQX(CARY)) Y)
(T (MEMQ X (CDR Y))))

e.g. (MEMQ'A B) (AB(AB) C)) --> NIL
(MESSOFF <number>) --> number Subr

Messoff and Messon are used to control the printing of certain
system messages. They control bits in a control byte, as follows:

1 - Garbage collection bytes collected OFF
2 - Garbage collection number OFF
4 - Error number (and message if any) ON
8 - Error backtrace ON
64 - Controls conversion of (QUOTE <id>) to “<id>" ON

For example, (MESSON 2) causes the garbage collection number
to be printed, while (MESSOFF 8) causes the error backtrace to
be suppressed.

e.g. (MESSOFF 10) --> 255

49

(MESSON <number>) --> number Subr
See MESSOFF.

(MIN2 <x> <y>) --> number Subr
This returns the smaller of the two numbers <x> and <y>.

eg. (MIN27 3) -->3
(MINUS <number>) --> number Subr
This returns <number> negated.

e.g. (MINUS Ty --> -1
(MINUS -3) --> 3

(MINUSP <x>) --> T or NIL Subr
This returns T if x a number and x<0; otherwise, it retums NIL.

e.g. (MINUSP -3) --> T
(MINUSP 4) --> NIL

(MKQUOTE <x>) --> list Subr
This returns the list (QUOTE <x>).

e.g. (MKQUOTE'(AB C) --> (QUOTE (AB C))
(NCONC <x> <y>) --> list Subr

This concatenates <x> to <y> without copying <x>. It is the same
as APPEND but is not as reliable. If in doubt, use APPEND!

(DEFUN NCONC (A B (W))
(COND
((ATOM A) B)
(T (SETQ W A)
(LOOP
(UNTIL (ATOM (CDR W)))
(SETQ W (CDR W)))

50

(RPLACD W B)
A))

e.g. (NCONC'(ABC)'(DE)) -->(ABCDE)
NIL Id
This is used to represent false.
(NOT <x>) --> T or NIL Subr
If <x> is NIL, then NOT returns T, otherwise, it returns NIL.

eg. (NOTNIL) --> T
(NULL <x>) --> T or NIL Subr

If <x> is NIL, then NULL returns T, otherwise, it returns NIL. It is
exactly equivalent to the function NOT (see above).

eg. (NULL 1) --> NIL
(NUMBERP <x>) --> T or NIL
This returns T if <x> is a number; otherwise, it returns NIL.
eg. (NUMBERPT) --> T
(OBLIST) --> list Subr

This returns a list containing all identifiers known to the system.
(FLATTEN (OBLIST)) produces a simpler list.

(ONEP <x>) --> T or NIL Subr

This returns T if <x> is the number one; otherwise, it returns NIL.
eg. (ONEP1) --> T

(OPEN <num> <filename>) --> <number> Subr

This function opens <filename> on channel <num>. It is similar to

51

the Basic OPEN command.
e.g. (OPEN 15 "NAME")
(OR <exprl> <expr2> <expr3>...) --> any Fsubr

This returns the first of the arguments that is non-NIL, or NIL if it
exhausts these arguments.

e.g. (OR (NUMBERP 'A) (CONS A B) (ZEROP 'T)) -->
(AB)

(ORDERP <id 1> <id 2>) --> T or NIL Subr

This returns T if the ASCII code of the printname of <id 1> is
greater than that of <id 2>; otherwise it returns NIL.

e.g. (ORDERP 'A 'B) --> NIL
(ORDERP'B'A) --> T
(ORDERP'AB'AA) --> T
(ORDINAL <id>) --> number Subr

This returns the ASCII code of the first character of the printname
<id>.

e.g. (ORDINAL 'APPLE) --> 65
(OUT <value> <ioport>) --> <value> Subr
This sends <value> to the Z80 input/output specified by <ioport>
e.g. (OUT 10 254) --> 254
(PAINT) --> NIL Subr
This causes a fill on the current graphics page of any shape

starting at the current beam position, and stopping at any
boundary that is not the same colour as the current beam position.

52

(PAIR <x> <y>) > a list Subr
<x> and <y> must be lists with the same number of elements.
PAIR returns a list in which each element is a dotted pair, the CAR
taken from <x> and the CDR taken from <y>.

eg. (PAIR'(AB) '(12))-->((A' 1) (B.2))

(PALETTE <c0> <cl> <c2> <c3> <c4> <> <c6> <cI>) -->
NIL

Subr
This specifies the palette for the current graphics channel, with
<c0> to <cT> being integers in the range 0-255, each specifying
a colour.
NOTE:; In 2 colour mode c2 to c7 are redundant, in 4 colour mode
c4 to c7 are redundant, in 16 colour mode the other eight colours
are derived from c0 to c7 in the usual way.

e.g. (PALETTE 10 20 40 5 73 122 5 0) --> NIL

(PAPER <col>) --> NIL Subr

This changes the paper colour of the current graphics channel to
<col>, the colour taking effect when the channel is next CLEARed.

e.g. (PAPER 29) --> NIL
(PEEK <address>) --> number Subr
This returns the contents of <address>.

e.g. (PEEK 10) --> 6
PERIOD Var
The value of PERIOD is the character "
(PLIST <id>) List

This returns the property list of the identifier <id>.

53

e.g. (PLIST'A) --> ((PROP1.VALUEI) (PROP2.-19))
(PLOT <x> <y>) --> NIL Subr

This moves the graphics beam to (<x>, <y>). If the beam is on, it
will draw a line.

e.g. (PLOT 200 100) --> NIL.
(PLOTR <x> <y>) --> NIL Subr
This moves the graphics beam by <x> in the x-direction and <y>
in the y-direction from the current beam position. If the beam is on,
it will draw a line.

e.g. (PLOTR 100 200) --> NIL
(PLOTMODE <num>) --> NIL Subr

This sets the plotting mode on the current graphics channel as
follows:

0. PUT plotting (default)
1. OR plotting
2. AND plotting
3. XOR plotting
e.g. (PLOTMODE 2) --> NIL
(PLOTSTYLE <num>) --> NIL Subr
This specifies the linestyle on the current graphics channel
<num> is an integer in the range 1-14, with 1 being a solid line
and the others various dotted lines.
e.g. (PLOTSTYLE 5) -->NIL
(PLUS <arglist>) --> number Fsubr

The sum of the integers in <arglist> is returned.

e.g. (PLUS 10 3 16) --> 29

54

(PLUS2 <x> <y>) --> number Subr

A more efficient way of adding just two numbers <x> and <y>.
eg. (PLUS273) --> 10

(POKE <address> <value>) --> <value> Subr

This places the <value> in a memory location determined by
<address>.

e.g. (POKE 10 23) --> 23
(PRIN [<arglist>]) --> any Subr

The arguments in <arglist> are evaluated and displayed without
intervening blanks. Special characters are escaped.

e.g. (PRIN 'A BLANK 'B) --> B will display A! B
(PRINC [<arglist>] --> any Subr

This is the same as PRIN but with the special characters not
escaped.

e.g. (PRINC'A BLANK 'B) --> B will display A B
(PRINT [<arglist>]) --> NIL Subr

This is the same as PRIN but including the CR/LF and returning
NIL.

e.g. (PRINT'A BLANK 'B) --> NIL will display A! B
(PRINTC [<arglist>]) --> NIL Subr

This is the same as PRINT but with the special characters not
escaped.

e.g. (PRINTC 'A BLANK 'B) --> NIL will display A B

55

(PROG] <expl> <exp2>) --> <expl> Subr
This returns the first argument.

eg. (PROG1 'A'B) --> A
(PROG2 <expl> <exp2>) --> <exp2> Subr
This returns the second argument.

e.g. (PROG2'A'B)--> B
(PROGN <expl> <exp2> ... <expn>) --> any Fsubr

This evaluates <expl> <exp2> ... <expn> in turn and then
returns <expn>.

e.g. (PROGN'A34'B)-->B
(PUT <id> <ind> <prop>) --> <prop> Subr

This places the property <prop> on the property list of <id>
under the indicator <ind>.

e.g. (PUT 'V'NAME 'DD)
(QUOTE <any>) --> unevaluated <any> Fsubr
This stops evaluation and is written '<any> throughout LISP.
e.g. (QUOTEA) --> A
or
'‘A-->A
(QUOTEP <x>) --> T or NIL Subr

This returns T if <x> is a quoted expression; otherwise, it returns
NIL.

e.g. (QUOTEP'(QUOTE 7)) --> T

56

(QUOTIENT <x> <y>) --> number Subr

This divides number <x> by number <y>, ignorning the
remainder, and returning the answer.

e.g. (QUOTIENT7 3) --> 2
(RANDOM <num>) --> number Subr
This returns a random number in the range 0 . .. <num> - 1
unless <num> = 0 when the range is 0-32767. The maximum

value for <num> is 2000.

e.g. (RANDOM 1967) --> 1510

(RANDOMISE <seed>) --> <seed> Subr
This can be used to control the production of random numbers. If
the <seed> is zero, then the sequence is unpredictable, but if it is
non-zero, then a specific repeatable sequence is obtained.

e.g. (RANDOMISE 43) --> 764
(RDS <ch>) --> <cr> Subr

This selects <ch< as the current input stream, returning the
previous input stream.

eg. (RDS1)-->0
(READ) --> any Fsubr

The function returns the result of reading the next s-expression
from the current input channel

(READLINE) --> any Fsubr

This reads off the current input channel up to the next newline
character, and forms a single identifier, which is returned.

51

(READ-STATUS) --> <num> Subr

This returns the status of the current read channel. its values are:

-1 - end of file reached
0 - character ready to be READ
1 - otherwise

(RECLAIM) --> number Subr
This forces a garbage collection. It returns the number of LISP
cells free. Multiply this figure by 5 to get an idea of the number of
bytes free.
(REDIRECT <old> <new>) --> NIL Subr

This redirects all output operation for the <old> channel to the
<new> channel

e.g. (REDIRECT 42 104) --> NIL
(REMAINDER <x> <y>) --> number Subr

If x>0, then x MOD (ABS y) is returned. If x>0, then y-(ABS x)
MOD (ABS y) is returned.

e.g. (REMAINDERT7 3) --> 1
(REMAINDER -7 3) --> 2

(REMFLAG <id list> <ind>) --> NIL Subr
This ‘unflags’ the list of identifiers <idlist>.

e.g. (REMFLAG '(A B) 'FINE) --> NIL
(REMOB <id>) --> <id> Subr
This searches the oblist for <id> and removes it if it is present.

eg. (REMOB'A) --> A

58

(REMPROP <id> <ind>) --> any Subr

This removes the property <ind> from the property list of the
identifier <id>. It returns NIL if the property cannot be found.

e.g. (REMPROP 'V 'NAME) --> DD
(REPEAT <count> <exp>) --> NIL Fsubr
This evaluates <exp>, <count> times.

e.g. (REPEAT 5 (PRINC 'AB)) --> NIL displays
ABABABABAB

(REVERSE <x>) --> list Subr

This returns a copy of the list <x> with the elements in reverse
order.

eqg. (REVERSE'(AB(CD)) -->(E(CD)BA)
(REVERSEIP <x>) --> list Subr

This does the same as REVERSE and is much quicker, though less
reliable.

.e.g (REVERSEIP'(ABCD))-->(CDBA)
RPAR Var
The value of RPAR is the character ')".
(RPLACA <mode> <exp>) --> any Subr
This replaces the CAR field of <mode> with <exp>.

eg. (RPLACA'(AB) 1) --> (1 B)
(RPLACD <mode> <exp>) --> any Subr

This replaces the CDR field of <mode> with <exp>.

59

e.g. (RPLACD'(AB) 1) --> (Al)
(SASSOC <key> <alist>) --> (<key> <value>) or any Subr
This searches the <alist> for a given <key> and returns the key
value pair if it is present. If the key is not found, then <fn> is

evaluated with no arguments.

e.g. (SASSOC 'A '((B.27) (A-3)) FN) --> (A-3)
(SASSOC 'A '((B.27) '(LAMBDA NIL 5)) --> §

(SAVE <filename>) --> <filename> Subr
This will save the current state of the system (to be retrieved later
by LOAD).

e.g. (SAVE "NAME")
(SET <id> <exp>) --> <exp> Subr

This changes the value of <id> to <exp>.
e.g. (SET 'X 42) --> 42

(SETATTRIBUTES <num>) --> NIL Subr

This sets the graphics attribute flag byte (on the current graphics

channel) to <num>. Basically this byte of flags affects the way

things are plotted in the attribute mode. For a full description

please refer to the EXOS specifications. The function returns NIL.
e.g. (SETATTRIBUTES 3) --> NIL

(SETCOLOUR <num> <col>) --> NIL Subr

This makes the ‘logical’ colour <num> on the palette into colour
<col>.

e.g. (SETCOLOUR 3 24) --> NIL

60

(SETQ <id> <exp>) --> <exp> Fsubr

This is the same as SET but the first argument is automatically
quoted.

e.qg. (SETQ X 42) --> 42
(SET-TIME <id>) --> NIL Subr

This allows the system clock to be set (see TIME). The argument
<id> should be an identifier eight characters long with the time in
the format:

hh:mm:ss

e.g. (SET-TIME “01:30:42") --> NIL
(SETVIDEO <ind> <col> <x> <y>) --> NIL Subr

This defines a video page and should be called just before the
page is OPENED or CREATED>

<ind> should be:
0 - 128 low-resolution characters (42 characters
per line)
1 - high resolution pixel graphics (872 pixels)
2 - 128 high-resolution characters (84 characters
per line)
5 - low-resolution pixel graphics (436 pixels)
15 - attribute mode.

The resolutions given in parentheses are for full-screen displays in
the two colour mode. The vertical resolution for a full-screen is
27 characters or 243 pixels.

<col> should be:
0- 2 colours
1- 4 colours
2 - 16 colours
3 - 256 colours

<x> and <y> determine the size of the page.

1<x<42
0<y<255

61

e.g. (SETVIDEO 1 2 40 20) --> NIL
(SNDS <ch>) --> <num> Subr
This makes <ch> the current channel, returning the previous one.
e.g. (SNDS 56) --> 34

(SOUND <env> <p> <vI> <vr> <sty> <ch> <d> <f>) -->
NIL Subr

This actually produces a sound (provided that the current sound
channel is open to the SOUND device). The meaning of these
parameters is:

<env> - The envelope to use for the sound (see envelope). An
envelope of 255 will produce a ‘beep’ of constant
amplitude and pitch for the duration of the sound.

<p> - The starting pitch of the sound in semitones.
<vl> - Overall left amplitude (0 . .. 255)
<vr> - Overal right amplitude (0 ... 255)

<sty> - The sound style byte. The effect of this byte is best
determined by experiment! Zero gives a pure tone for
tone channels and white noise for the noise channel.

<ch> - The source for the sound - 0, 1 or 2 for the appropriate
tone channel and 3 for the noise channel.

<d> - The duration of the sound in 'ticks'. (1/50ths of a second)

<f> - Flags byte.
0 => sound is queued up
128 => sound overides any sound queued for this
channel.

The routine returns NIL.
e.g. (SOUND 255 20 3 10 30 40 0 0) --> NIL
(SPRINT <exp>) --> NIL Subr

This is the program formatter. It displays <exp> in a neater
format.

62

(SUB1 <number>) --> number Subr
This returns <number> less one.

e.g. (SUBI 23) --> 22
(SUBLIS <alist> <exp>) --> any Subr

The value returned is the result of substituting the CDR of <alist>
for every occurance of the CAR part in <exp>.

e.g. (SUBLIS '((A. 10) (BC)) 'HA (B) A)) --> (H 10
(© 10

(SUBRP <x>) --> T OR NIL Subr
This returns T if <x> is a codepointer to a subr, otherwise NIL.

e.g. (SUBRP CAR) --> T
(SUBST <x> <y> <exp>) --> list Subr
This substitutes 'x' for 'y’ in <exp>.

e.g. (SUBST'A'B(CB (&) (BA)) --> (CA(A) (A)
T Id
This represents TRUE in the system.
(TAIL <x>) --> any Subr
This function is identical to CDR.

eg. (TAIL'(A.B))-->B
(TERPR] --> NIL Subr

This prints a carriage return on the screen.

63

(TEXT) --> NIL Subr

This opens up a new text page, with the number of columns being
defined by the last DEFVIDEO call.

(TIME) --> identifier Subr

This returns the current time as an identifier, eight characters
long, in the format:

hh:mm:ss

The clock starts at 00:00:00 when the machine is turned on. it may
be set with the function SET-TIME (qv).

e.g. (TIME) --> 00:10:38
(TIMES <arglist>) --> number Fsubr

The evaluates the elements of <arglist> and then multiplies them
together, returning the result.

eg. (TIMES 2 5 -3) --> -30
(TIMES2 <x> <y>) --> number Subr

This is a more efficient way of multiplying just two numbers <x>
and <y>.

eqg. (TIMES2 37) --> 21
UNDEFINED Id
When an identifier is first used it is given the value '‘UNDEFINED'.
(UNTIL <exp>) Fsbur
this is used in conjunction with a LOOP.

e.g. (UNTIL (EQ A 3))

64

VERSION Id
this is a string describing the version of LISP in operation.
(WHILE <exp>) Fsubr
this is ued in conjunction with a LOOP.

e.g. (WHILE (EQ A 3))
(WRS <handle>) --> <handle> Subr
This selects channel <handle> as the current output stream.

eg (WRS2)-->3
(ZEROP <x>) --> T or NIL Subr
This returns T if <x> is the number zero; otherwise, it returns NIL.

e.g. (ZEROPO0) --> T

65

Appendix 1
EXOS VARIABLES

The following list gives the EXOS variables that can be
manipulated using the EXOS-READ, EXOS-WRITE and EXOS-

TOGGLE commands.

Any variable can be set to any value in the range 0-255. However,
many of the variable act as switches to turn something on or off,
and in these cases zero corresponds to ‘on’ and 255 to 'off.

0 IRQ__ENABLE__STATE bit 0 - set to enable sound IRQ

bit 2 - set to enable 1Hz IRQ
bit 4 - set to enable video IRQ
bit 6 - set to enable external IRQ

Bits 1,3,5 and 7 must be zero. This variable should not be altered

in normal use.

1 FLAG_SOFT__IRQ

2 CODE_SOFT__IRQ

3 DEF_TYPE

4 DE__CHAN
5 TIMER

6 LOCK_KEY
1 CLICK_KEY

66

This is set to non-zero by a device to
cause a software interrupt

This should be inspected by a
software interrupt routine to
determine the reason for the
interrupt

Type of default device
0->TAPE
1->DISK

Default channel number

This is a 1Hz down counter, which
causes a software interrupt when it
reaches zero, whereupon it will stop

Current keyboard lock status

0--> This enables key click
<>0--> This disables key click

8 STOP__IRQ

9 KEY__IRQ

10 RATE_KEY

11 DELAY__KEY

12 TAPE__SND
13 WAIT__SND

14 MUTE__SND

15 BUF_SND

16 BAUD__SER

17 FORM_SER

18 ADDR__NET
19 NET__IRQ

0--> Stop key causes software IRQ
<>0--> Stop key returns its code

0--> Any key pressed causes
software IRQ, as well as returning
its code

Auto repeat rate in units of 1/50th
second

Delay until auto-repeat starts
0--> No auto-repeat

0--> This enables tape sound

0--> Sound driver waits when queue
full
<>0--> Returns SQFUL error

0--> This activates internal speaker
<>0--> This disables internal
speaker

Sound envelope storage size in
phases

This defines serial BAUD rate
6=>300 baud 12=>4800 baud
8=>1200 baud 14=>9600 baud

10=>2400 baud

This defines serial word format

bit 0 - no. of data bits 0=8 bits, 1=7
bits

bit 1 - parity enable. Clear for no
parity

bit 2 - parity select. 0=even, 1=odd.
bit 3 - no of stop bits 0=2, 1=1

Network address of machine

0--> This causes data received on
the network to produce a software
interrupt

67

20 CHAN__NET

21 MACH__NET

22 MODE__VID
23 COLR_VID
24 X_SIZ VID
25 Y__SIZ VID
26 ST_FLAG

21 BORD__VID
28 BIAS__VID

29 VID__EDIT

30 KEY__EDIT

31 BUF_EDIT

32 FLG__EDIT
33 SP_TAPE

34 PROTECT

35 LV__TAPE

36 REM.1

37 REM.2

Channel number of network block
received

Source machine number of network
block

Video mode

Colour mode

X page size

Y page size

0=> This displays the status line
Border colour of screen

Colour bias for pallette colours 8 . . .
16

Channel number of video page for
editor

Channel number of keyboard for
editor

Size of editors buffer (in 256 byte
pages)

Flag to control reading from editor

Forces slow tape saving when non-
Zero :

Makes a protected file when non-
zero

This controls tape level output

Sets state of cassette remote control 1
0-->OFF
<> 0-->ON

Sets state of cassette remote control 2

The following EXOS variable numbers should not be modified by

the user: 0,1,2.

68

Appendix 2
ERROR MESSAGES

The following list represents the errors that can be produced by
the IS-LISP interpreter.

o=

CoNPALR

10.

12.
13.
14.
15.
16.
11.
18.
19,

21.
22.
23.
24.
25.
26.
21.

29.

31.
32.

Qut of memory error

Execution interrupted (stop key has been pressed during
calculation)

Interrupt during print

Software interrupt (handler has not been defined)
Arithmetic overflow

Division by zero

Number expected as an argument

Identifier expected

Byte expected (a number in the range 0-255)
Byte or negative number expected

Channel expected (number in the range 0-255)
Indicator expected

Excess "." or)" while reading

Illegal dot notation

Number too large to be read

String too long (all strings have a maximum length of 255 chrs.)
Undefined function

Apply given Fsubr as function

Apply given number as function

Bad LAMBDA expression

Bad FUNARG expression

Too many arguments for LAMBDA expression

Too few arguments for LAMBDA expression
Optional arguments must follow simple arguments
Attempt to take CAR or CDR of an atom

Badly formed COND expression

Badly formed association list

Badly formed property list

Wrong number of arguments for primitive function
Unable to change the values of system variables
System identifier in LAMBDA/MACRO parameter list
MACRO form with a null parameter

MACRO parameter must be an atom

69

36.
31.

39.
41.

45.

70

Badly formed MACRO expression

Lists not the same length for function PAIR

Bad argument to random function (must be an integer 0-2000)
Number expected for repeat factor

Bad argument to quote

List expected for RPLACA/RPLACD

Not given good list of identifiers for IMPLODE

Too many characters given to IMPLCDE

Identifier expected by SET or SETQ

Not enough memory to load file: try closing unwanted
channels and trying again

Cannot save with extensions loaded

Bad argument to SET-TIME

Appendix 3
FUNCTION KEYS

The Enterprise microcomputer has eight function keys, labelled f1
to f8. When used on their own or in conjunction with the SHIFT-
KEY, these produce 16 functions, which can be defined by the
user using the FKEY function.

For example, (FKEY 5 "HELLO. KEYS5 PRESSED")

programs KEY5 to produce a message when function key 5 is
pressed.

When the system is switched on or reset, fl to f8 are given default
values as shown below:

FUNCTION

(FLATTEN (OBLIST))

(DEFUN

(FEDIT

(EXOS-TOGGLE 36) toggles cassette remote 1
(TEXT)

(GRAPHICS)

(EXOS-TOGGLE 7) toggles keyclick
(RECLAIM)

9-16 the null string """

NG WN = E

N.B. By default these will cause a software interrupt when pressed

11

	IS-LISP_English~000
	IS-LISP_English~001
	IS-LISP_English~01
	IS-LISP_English~02
	IS-LISP_English~03
	IS-LISP_English~04
	IS-LISP_English~05
	IS-LISP_English~06
	IS-LISP_English~07
	IS-LISP_English~08
	IS-LISP_English~09
	IS-LISP_English~10
	IS-LISP_English~11
	IS-LISP_English~12
	IS-LISP_English~13
	IS-LISP_English~14
	IS-LISP_English~15
	IS-LISP_English~16
	IS-LISP_English~17
	IS-LISP_English~18
	IS-LISP_English~19
	IS-LISP_English~20
	IS-LISP_English~21
	IS-LISP_English~22
	IS-LISP_English~23
	IS-LISP_English~24
	IS-LISP_English~25
	IS-LISP_English~26
	IS-LISP_English~27
	IS-LISP_English~28
	IS-LISP_English~29
	IS-LISP_English~30
	IS-LISP_English~31
	IS-LISP_English~32
	IS-LISP_English~33
	IS-LISP_English~34
	IS-LISP_English~35
	IS-LISP_English~36
	IS-LISP_English~37
	IS-LISP_English~38
	IS-LISP_English~39
	IS-LISP_English~40
	IS-LISP_English~41
	IS-LISP_English~42
	IS-LISP_English~43
	IS-LISP_English~44
	IS-LISP_English~45
	IS-LISP_English~46
	IS-LISP_English~47
	IS-LISP_English~48
	IS-LISP_English~49
	IS-LISP_English~50
	IS-LISP_English~51
	IS-LISP_English~52
	IS-LISP_English~53
	IS-LISP_English~54
	IS-LISP_English~55
	IS-LISP_English~56
	IS-LISP_English~57
	IS-LISP_English~58
	IS-LISP_English~59
	IS-LISP_English~60
	IS-LISP_English~61
	IS-LISP_English~62
	IS-LISP_English~63
	IS-LISP_English~64
	IS-LISP_English~65
	IS-LISP_English~66
	IS-LISP_English~67
	IS-LISP_English~68
	IS-LISP_English~69
	IS-LISP_English~70
	IS-LISP_English~71
	IS-LISP_English~72
	IS-LISP_English~73
	IS-LISP_English~74

