
On the Way 
to Standard BASIC

A survey of what's in the proposed ANSI standard 
and why it's there.

Thomas E. Kurtz 
Dartmouth College 
Hanover, NH 03755

The American National Standards 
Institute (ANSI) committee X3J2, 
charged with developing a standard 
for the BASIC programming lan­
guage, held its first meeting in 
January 1974. We're now well into 
the eighties and still we have no pub­
lished standard. Why so long? The 
standardization process is at best 
slow and cumbersome, but need it be 
this slow? After all, standards for 
FORTRAN, COBOL, and PL/I have 
been around for a while. Half of the 
short answer is that the X3J2 commit­
tee has produced in eight years two 
standards: the "draft," which is the 
subject of this article, and Minimal 
BASIC, which appeared in 1978 (see 
reference 1). (Minimal BASIC has not 
caught on because the rapid develop­
ment of chip technology has made its 
modest capabilities obsolete.) The 
other half of the short answer is that 
BASIC was changing drastically 
while the committee was trying to 
standardize it. In otherwords, BASIC 
has been a moving target.

BASIC got its start as a simple lan­
guage designed to make life easier for 
the nonexpert programmer. But what

About the Author
Thomas E. Kurtz is co-author of the original, 

"Dartmouth" BASIC and is chairman of the 
ANSI committee that has developed the pro­
posed draft standard for BASIC. 

started out as a simple language with 
no more than a dozen different state­
ments dealing only with numbers has 
grown into a diverse language with 
many statements capable of handling 
numbers, strings, arrays, files, and 
plotting. Single-letter and letter-digit 
variable names have grown to multi­
character variable names. Simple 
GOTOs and IF ... THENs have 
evolved into the famous constructs of 
structured programming. Each ven­
dor has developed its own formats 
and rules for these extensions so that 
present versions of BASIC differ 
widely as to form and content.

At long last, the diverging paths 
are being brought together in the new 
proposed standard for BASIC. The 
standard includes structured con­
structs, a 'MAT" (matrix) package, 
formatted output, subprograms that 
can be made independent, files, ex­
ception handling, and optional sec­
tions on graphics, sophisticated file 
structures, real time, fixed decimal 
arithmetic, and editing. (Details ap­
pear later in this article.) The example 
in listing 1 illustrates a few of the 
highlights of standard BASIC: multi­
character identifiers, subprograms, 
and several of the structured con­
structs.

The standard is currently (early 
1982) under technical committee mail 
ballot, which will assert (if it passes) 

that the technical development of the 
standard has been completed. The 
next major milestone is a public­
review period conducted by ANSΓs 
X3 committee, which supervises the 
making of all computer-related stan­
dards in the United States. Further 
steps, which usually take several 
years to complete, will follow before 
the standard becomes ANSI official, 
but these are formalities that have 
little likelihood of changing the con­
tent of the standard.

The standard will mainly benefit 
the educational world. Programs 
published in magazines such as BYTE 
may eventually be in standard BASIC 
rather than in some variation. Text­
books containing programs won't 
have to be written specifically for a 
particular brand or model of com­
puter. Finally, programs written in 
standard BASIC will be easier to 
transport and distribute.

Difficulties with Standardization
Developing a standard for BASIC 

has been difficult because the lan­
guage serves such a diverse clientele.

Educational users tend to work on 
mini- and microcomputers. They 
desire a language that is easy to leam 
and is not cluttered with declarations 
or excessive structure. They would be 
satisfied with fairly simple file sys­
tems.

182 June 1982 © BYTE Publications Inc



Listing 1: This program incorporates many of the new features of the proposed draft 
standard for BASIC.
100 Program CRAPS
110 !
120 ! A simple program in standard BASIC
130 !
140 ! Plays N games of craps
150 !
160 ! Read n
170 Data 10
180 !
190 For i = 1 to n
200 Call DICE (Total)
210 Print "You rolled a "; Total
220 Select Total
230 Case 7, 11
240 Print "You win."
250 Case 2, 3, 12
260 Print "You lose."
270 Case else
280 Print "which is your point."
290 Do
300 Call DICE (Newtotal)
310 Print Newtotal,
320 Loop until Newtotal = 7 or Newtotal = Total
330 If Newtotal = 7
340 Then
350 Print "You lose."
360 Else
370 Print "You win."
380 End if
390 End select
400 Next i
410 !
420 End
430 !
440 !
450 Sub DICE(Sum)
460 !
470 ! Roll two dice and add them up
480 !
490 Let dl = Int(6*Rnd + 1)
500 Let d2 = Int(6*Rnd + 1)
510 Let Sum = dl + d2
520 !
530 Sub end

Another group of users includes 
those with large machines or with ac­
cess to large machines. These users 
want a rich, compiler-based lan­
guage. They want to construct sub­
routine libraries of independently 
compiled subprograms. This group 
also wishes to write interactive pro­
grams that process strings of charac­
ters, something that FORTRAN and 
COBOL don't do easily. (PL/I allows 
string processing, but it's not accessi­
ble in many interactive environ­
ments.) Pascal does not offer what 
these users want either; it is too 
pristine.

A third group of users wishes to do 
business and financial calculations 
using BASIC. Such use is extensive 

partly because many of the early 
financial applications were written in 
BASIC. In Europe, BASIC is the 
primary business data-processing lan­
guage for small computers. This 
group wants formatted output, accu­
rate dollars-and-cents calculations, 
and access to record-structured files. 
Few suitable alternatives exist for 
these users on small machines.

What Most BASICs Are Like
Present-day BASICs, including the 

current version of the draft standard, 
reflect most of the goals of the 
original version of BASIC. For exam­
ple, most BASICs avoid declaration 
of variables, with the notable excep­
tion that many, including the draft

186 June 1982 © BYTE Publications Inc



standard, require declaration of ar­
rays (lists and tables). In most 
BASICs, variables are typed implicit­
ly, according to some special symbol. 
Thus, string variables have the dollar 
sign ($) in their name. This conven­
tion limits the number of different 
types of variables, because there 
aren't many special characters left. 
Some argue that this is good, not bad.

It is still true that a small job re­
quires only a small program. Some 
BASICs even allow omitting the END 
statement. A language that lacks 
declarations and excessive structure 
lends itself more readily to inter­
preters. For these, a simple computa­
tion requires but a single statement. If 
you want to add 2 and 2, the single 
direct statement:

PRINT 2 + 2

will work. Try this in Pascal or FOR­
TRAN!

Because a user can get by with a 
minimum of syntax rules and struc­
ture, BASIC is easy for novices to

learn. Perhaps even more important, 
it is easy for occasional users to 
remember. I know teachers who use 
the computer only twice a year but 
who can remember what to do with­
out having to check the manual.

The Proposed Standard
The standard will of course em­

brace most of simple BASIC or Mini­
mal BASIC. (ANSI Minimal BASIC is 
similar to the earliest versions of 
BASIC. It includes the REM, LET, 
INPUT, PRINT, READ, RESTORE, 
DATA, DIM, FOR, NEXT, IF. . . 
THEN, line number, GOSUB, 
GOTO, RETURN, ON. . .GOTO, 
RANDOMIZE, single-line DEF, 
STOP, and END statements. It 
lacks string lists, files, plotting, etc. 
ANSI Minimal BASIC is quite 
minimal!) BASIC extends Minimal 
BASIC in a number of ways, for ex­
ample, by allowing multicharacter 
variable names. It also includes fea­
tures completely missing from Mini­
mal BASIC, such as graphical output 
and real time. Incidentally, the com­

mittee elected to use the name BASIC 
for this standard. It had used the 
terms "Extended BASIC" and 
"Enhanced BASIC," but it dropped 
the modifiers, thus allowing their use 
by vendors later.

The standard is written so as to 
define standard-conforming pro­
grams. Any program that is written 
according to the rules of the standard 
is standard-conforming. A standard­
conforming implementation (inter­
preter or compiler) is one that will 
correctly process a standard-con­
forming program. A standard-con­
forming implementation may offer 
extensions, provided that all stan­
dard-conforming programs will con­
tinue to be correctly processed. This 
point is important in order to under­
stand some of the choices made by 
the committee.

Actually, the standard will consist 
of a core module plus five optional 
modules: enhanced files (direct access 
and keyed); graphics; real time; fixed 
decimal (for business users); and 
editing.

I'll now give a section-by-section 
summary of the features of the pro­
posed standard.

Data Types
BASIC includes variables and con­

stants of type numeric and string. 
Numeric is, of course, single preci­
sion. The standard will not specify 
other types, such as integer or double 
precision, both of which have been 
requested by part of the user com­
munity. It will provide fixed decimal 
but only as an option. The reason for 
not including other types is that 
BASIC serves many masters—large 
machines, small machines, micro­
computers, interpreters, compilers, 
education, business—making the 
choice of data types difficult. As it is, 
vendors can enhance their own ver­
sions of the standard BASIC with 
whatever additional data types are 
needed by their users. Of course, pro­
grams written to take advantage of 
such data types will not be standard­
conforming and might not be trans­
portable.

Program Comments
In addition to the REM statement

190 June 1982 © BYTE Publications Inc



for comments, BASIC will allow on­
line comments using the exclamation 
point (!).

Identifiers
It did not take the committee long 

to vote for multicharacter variable 
names. Up to 31 characters (letters, 
digits, and underlines, starting with a 
letter) are permitted for variable and 
function names, with the trailing 
dollar sign for string-variables count­
ing. Despite the obvious advantages 
over old-fashioned BASIC variable 
names, multicharacter names exact 
their price. For instance, spaces are 
required around keywords (such as 
FOR N = 1 to M instead of 
FORN = lTOM), and certain words 
cannot be used as variable names 
(mainly, the names of the functions 
with no arguments, such as RND). 
The first restriction is probably a 
good idea anyhow. The second poses 
a challenge to implementers to come 
up with reasonable error messages 
when unsuspecting novice users try to 
assign one of these words as a 
variable name.

Incidentally, uppercase and lower­
case may be used interchangeably for 
keywords, identifiers, function 
names, etc. Of course, the cases re­
main distinguishable in quoted 
strings, input replies, etc.

Numeric Operations
The big news is that arithmetic will 

be floating decimal. Thus, 
2.29 + 4.71 = 7.00, not 6.999999. 
Also:

.1 + .1 + .1 + .1
+ .1 + .1 + .1 + .1
+ .1 + .1 = 1 exactly

Vendors may offer native arithmetic 
(presumably floating binary or float­
ing hexadecimal) as an option if effi­
ciency is an issue. But users will final­
ly be able to carry out dollars-and- 
cents calculations with confidence.

Minimal BASIC provides these 
numeric functions: ABS, ATN, COS,



EXP, INT (the floor), LOG (natural), 
RND, SGN, SIN, SQR, and TAN. 
New numeric functions include 
ACOS, ANGLE (easier to use than 
ATAN for determining the angle 
given the base and height), ASIN, 
CEIL (ceiling, the opposite of INT), 
COSH, COT, CSC (cosecant), 
DATE, DEG (radians to degrees), 
EPS (the smallest representable 
positive number), FP (fractional 
part—the same as X-INT(X) for posi­
tive X), INF (the largest positive num­
ber), IP (integer part—the same as 
INT for positive values), LOGlO, 
LOG2, MAX, MIN, MOD, PI, RAD 
(degrees to radians), REM (remain­
der—the same as MOD for positive 
numbers), ROUND, SEC, SINH, 
TANH, TIME, TRUNCATE (reduce 
the number of significant digits, but 
don't round).

Taking a cue from the hand-held 
calculators, the user at his option can 
express angles in degrees instead of 
radians. Secondary school trig­
onometry and general math students

should benefit because normally 
students don't learn radian measure 
until they take calculus.

String Operations
The two important operations on 

strings are concatenation (joining two 
strings) and substring extraction. The 
former is accomplished by using the 
ampersand (&); the latter is achieved 
by following the string variable with 
a range enclosed in parentheses. 
Thus, LINE$(4:7) gives the fourth 
through seventh characters of the 
string LINE$. This substring notation 
can appear on the left side of a LET 
statement, in which case the fourth 
through seventh characters are re­
placed by whatever appears on the 
right side of the LET statement. The 
old substring functions (SEG$, MID$, 
LEFT$, etc.) that we have come to 
know and love are gone. Good rid­
dance!

Functions whose arguments or 
values are strings include CHR$, 
DATE$, LEN, LCASE$, ORD, POS,

STR$, TIME$, UCASE$, and VAL. 
CHR$ and ORD are opposite, and 
associate a character to its numerical 
value. LCASE$ and UCASE$ are 
lowercase- and uppercase-conversion 
functions. DATE$ and TIME$ give 
the date and time as strings. STR$ 
and VAL are the number-string con­
version functions that have been 
around for a while in BASIC. LEN 
gives the length of a string. POS 
searches a string for another string.

LET Statement
This brings us to a point that may 

disturb many. The LET in the LET 
statement is mandatory! One might 
ask why, as the option to omit it is 
such a common convention and a 
convenience to many users. The prin­
cipal reason was to reduce the 
number of reserved words while re­
taining simple parsing. As it is, only 
the no-argument function names like 
RND and the words NOT, PRINT, 
REM, and ELSE are reserved (not 
allowed to be used as identifiers). 
This means that a user cannot write 
LET RND = 3. One should realize, 
however, that the standard actually 
prescribes only that standard­
conforming programs may not omit 
the LET. Compilers and interpreters 
may, however, allow users to omit 
the LET, but they must accept the 
LET when it is present. Such im­
plementations will have to be smart 
enough to recognize that:

INPUT = 3

is a LET statement and not an input 
statement.

Arrays
Arrays must be dimensioned in the 

program before use. This rule con­
flicts with Minimal BASIC, which 
allows default dimensions for lists 
and tables (vectors and matrices) that 
do not appear in DIM statements. 
You might wonder why we are doing 
away with the convenience of not 
having to dimension small arrays. 
The reason is that general identifiers 
are now allowed for both arrays and 
functions. For example, in "LET 
X = A(3)" the meaning of A(3) is



ambiguous because it could be either 
element 3 of the array A, or the func­
tion A evaluated at 3.

There are three ways out of the 
dilemma. First, a two-pass compiler 
(or intepreter that does a pre-scan) 
could assume that A(3) was an array 
if it didn't find a function definition 
for A later in the program. Second, 
one could require that all functions be 
declared early in the program. Third, 
one could require that all arrays be 
declared early in the program. The 
committee adopted the third option 
because most arrays have to be 
dimensioned anyway and it's cus­
tomary to place the dimension state­
ments early in the program.

A MAT package includes matrix 
(or vector) input and output, scalar 
multiplication, matrix add, subtract, 
and multiply, and the matrix func­
tions of linear algebra INV, TRN, 
DOT, and DET. Even those who 
have no interest in linear algebra will 
find the MAT input and output state­
ments handy. For instance, suppose a 
small firm has several departments,

and that the sales results for all of 
them are kept in several lists (one­
dimensional arrays). Then:

MAT net_sales =
gross_sales - expenses

will calculate the net sales for all 
departments at once. (The above 
statement, and others like it later in 
the article, is intended to occupy a 
single line.)

Only one- and two-dimensional ar­
rays are included in the standard, 
though designers of interpreters and 
compilers may choose to allow more.

Logical Expressions
Minimal BASIC allows only simple 

relational expressions (such as 
X < = Y) in IF statements. BASIC 
allows these to be combined using 
AND, OR, and NOT to form logical 
expressions. Parentheses are allowed, 
in case you forget whether AND 
takes precedence over OR or vice ver­
sa. Whereas Minimal BASIC allows 
only = and < > with strings (as

with IF A$ = 'rYES"), BASIC allows 
the full range of relational operators 
with strings. What actually happens 
when "IF A$ < B$" is used depends 
on the collating sequence. For in­
stance, the ASCII collating sequence 
specifies that "B'' comes before "a".

Branching and Decision Making
The programmer can continue to 

use GOTO and IF. . .THEN from 
Minimal BASIC. Or instead he can 
choose to use structured constructs 
now typical of almost all program­
ming languages. Take, for instance, 
the IF. . .THEN. . .ELSE construct. 
In BASIC, this takes the form:

IF <logical expression> THEN

ELSE

END IF

Two important features of this con­
struct are, first, the keywords that 
define the construct must appear at 
the beginning of separate lines. Thus, 
the ELSE and END IF cannot be 
obscurely buried near the end of a 
line. Second, the construct ends with 
a keyword sequence that is unique to 
that construct.

You can use the simple one-line 
IF. . .THEN. . .ELSE, which might 
look like this:

IF x < y THEN LET a = 3 
ELSE LET a = 4

With both forms of IF. . .THEN 
. . .ELSE, the programmer may omit 
the ELSE part.

Looping Structures
The FOR NEXT loop of Minimal 

BASIC is retained, and a new struc­
ture, the DO LOOP, is added. The 
loop-ending condition (or conditions) 
may be attached to the DO state­
ment, the LOOP statement, or both. 
The loop-ending condition may be 
expressed either as a WHILE or as an 
UNTIL. The following is typical:

DO UNTIL i > n OR a$ = list$(i)

LOOP

198 June 1982 © BYTE Publications Inc



In addition, a DO LOOP may be 
exited with an EXIT LOOP state­
ment. Whenever such a statement ap­
pears in the body of a loop, the next 
statement executed will be the one 
following the first LOOP statement 
encountered. The following example 
is typical:

DO
PRINT "Input an integer ";
PRINT "between 1 and 7";
INPUT x

IF 0 < x AND x<=7 AND
x = INT(x) THEN EXIT DO 

PRINT "Bad number; reenter" 
LOOP

The EXIT DO gets you out of a DO 
LOOP. Similarly, an EXIT FOR gets 
one out of a FOR NEXT loop. The 
previous example of the DO LOOP 
for searching a string list could also 
be written:

FOR i = 1 TO n
IF a$ = list$(i) THEN EXIT FOR 

NEXT i

Exit statements are also provided 
for multiline defined functions and 
subprograms.

Multiway Selection
A SELECT construct allows choos­

ing one of many alternatives. The 
following example illustrates some of 
its features:

SELECT DICE
CASE 7, 11

PRINT 'Win"
CASE 2, 3, 12

PRINT "Lose"
CASE ELSE

PRINT "Roll again"
END SELECT

Functions, Subprograms, 
and Chaining

Minimal BASIC gives us two sim­
ple methods for program modulariza­
tion—single-line defined functions 
and subroutines (of the GOSUB 
RETURN type). BASIC adds three 
methods: multiple-line defined func-

202 June 1982 © BYTE Publications Inc



tions, subprograms, and the ability to 
chain. Multiple-line defined functions 
begin with a DEF statement and end 
with an END DEF statement. In be­
tween, there can be any code, but 
there should be at least one LET state­
ment having the name of the function 
on the left side.

Subprograms are extemal to the 
main program and to each other. 
Their intemal variables are thus local 
to them, in contrast with defined 
functions, which can access all vari­
ables in the program unit in which 
they are defined. Parameters of sub­
programs can be numeric, string, ar­

ray (of either type), or a channel­
setter (which refers to a file, which I'll 
discuss later). Because input to and 
output from subprograms is through 
the calling sequence only, subpro­
grams can be separately compiled (on 
those systems that provide compiling) 
and collected into libraries.

Multiple-line defined functions 
may also be made external to the pro­
gram, so they can be collected into 
libraries. In this use, they start with 
the keyword FUNCTION instead of 
DEF and end with END FUNCTION.

A CHAIN statement allows a pro­
gram to stop and start running some 

other program, which could be in a 
different language. Information may 
be passed to the chained-to program 
through an argument list that works 
the same as with defined functions. 
That is, arguments may be numeric 
or string expressions or arrays, and 
they are called "by value." The cor­
responding parameters in the 
chained-to program follow the key­
word PROGRAM.

Input and Output
The READ and DATA statements 

work as they do in Minimal BASIC. 
String data can be quoted, in which

204 ∫une 1982 © BYTE Publications bκ



case the string includes all characters 
between the quote marks including 
possible leading and trailing spaces. If 
the string data contain no leading or 
trailing spaces, commas, or quote 
marks, they may be unquoted.

The INPUT statement works as in 
Minimal BASIC. Inputting an entire 
line without regard to commas and 
leading and trailing spaces is done 
with the LINE INPUT statement.

Input-prompt strings other than the 
"?" can be provided. In addition, 
timeout control can be added. The 
following example is typical:

INPUT PROMPT "Answer = ", 
TIMEOUT 5, ELAPSED t: 
answer

As in Minimal BASIC, PRINT 
statements may use the comma to 
move to the next print zone, the semi­
colon to stay where you are, and the 
TAB function to move to a specified 
columnar position. BASIC provides, 
in addition, a PRINT USING state­
ment for more elaborate output for­
matting. The image, which is like a 
picture of the eventual printed line, 
can be contained in a string or in an 
IMAGE statement referred to by its 
line number. The alternate forms of 
the PRINT USING statement are:

PRINT USING format$: . . .
or

PRINT USING 100: . . .

Array input and output are also in­
cluded. Variable amounts of input 
can be received by the statement:

MAT INPUT A(7)

Files
BASIC provides for four types of 

file organization: sequential, stream, 
relative, and keyed. Sequential files 
consist of records that must be ac­
cessed sequentially. Stream files con­
sist simply of a stream of values and 
must also be accessed sequentially. 
Relative files are sometimes called 
random-access files; they probably 
will exist on disks. Keyed files are ac­
cessed not by record number but by 
some key.

206 June 1982 © BYTE Publications lnc



Three types of records are de­
scribed: display, internal, and native. 
Display records are produced by 
PRINT statements—strings of charac­
ters ending in a carriage return-line­
feed. IntemaI records contain values 
of numbers or strings, but in some in­
ternal format. The key point is that 
what gets read back in is exactly iden­
tical to what was written out. (This is 
not necessarily true with display­
format files, as numbers must be con­
verted to strings of characters on out­
put and from strings of characters 
back to numbers on subsequent in­
put.)

Of the 12 combinations of file 
organization and record type, only 3 
are required in the core standard: se­
quential-display, sequential-internal, 
and stream-internal. Five other com­
binations are defined as possible en­
hancements. The remaining 4 are not 
defined by the standard, which leaves 
open the possibility that some im­
plementations may use them.

The OPEN statement associates a 
channel-setter of the form "#13" to a 

file whose name is given. Ways are 
provided to find out if a file exists, 
and if it does, what its attributes are. 
The CLOSE statement closes a file. 
The ERASE statement erases the con­
tents of a file and leaves it of zero 
length. Two examples:

OPEN #infile: NAME "Myfile",
ACCESS INPUT, 
ORGANIZATION 
SEQUENTIAL

OPEN #3: NAME "filename"

In the second example, it is assumed 
that the organization is sequential; 
the record-type, display; and the ac­
cess, "outin" (both input and output).

PRINT and INPUT are used to pass 
information to and from sequential- 
display files, just about the way they 
work for the terminal. READ and 
WRITE are used to communicate 
with all three file types. Display files 
can thus be accessed by both PRINT 
and INPUT, and READ and WRITE. 

Native-format files are accessed 
through "templates" and are provided 
for possible access to COBOL files.

Exception Handling
The construct for intercepting ex­

ceptions (situations during execution 
that usually cause the program to ter­
minate) is:

WHEN EXCEPTION IN

USE

END WHEN

The following simple example can 
be used to protect against an invalid 
VAL argument;

LET flag = 0
WHEN EXCEPTION IN

LET x = VAL(a$)
USE

PRINT "Bad number; reenter"
LET flag = 1

END WHEN

208 June 1982 © BYTE Publications Inc



The USE part is invoked when any 
exception whatsoever occurs during 
the WHEN part. In the previous ex­
ample, it is almost true that only one 
kind of exception is possible. The 
printed error message will thus be 
correct most of the time. The pro­
grammer may double-check by using 
the EXTYPE function, which returns 
the coded number of the exception. 
For the example above, the EXTYPE 
value is 4001. Some 144 exceptions 
are defined and coded in the stan­
dard.

A CAUSE statement 
can force any 

particular exception.

More elaborate exception handlers 
may be constructed. For such pur­
poses there are the RETRY, CON­
TINUE, and EXIT HANDLER state­
ments and the EXLINE function. 
RETRY sends control to the start of 
the line in which the exception oc­
curred, CONTINUE sends control to 
the line following that in which the 
exception occurred, while EXLINE 
has as its value the line number of the 
line in which the exception occurred. 
There is also a CAUSE statement that 
can force any particular exception to 
occur; a programmer can use the 
cause statement to check his excep­
tion-handling code.

Graphics
The language includes statements 

to carry out simple plotting. The 
basic plotting statement is PLOT. It 
can be used to plot dots or straight 
lines. As examples:

PLOT X,Y
PLOT X1,Y1; X2,Y2
PLOT

If the beam is off, the first plots a dot 
at (X,Y), and the second draws a line 
from (X1,Y1) to (X2,Y2). If the beam 
is on, the first and second also draw a 
line from the previous point to (X,Y) 
or (X1,Y1), respectively. The third 
turns the beam off (lifts the pen) if it's 
on and does nothing if the beam is 
off.

210 June 1982 © BYTE Publications Inc



Listing 2: A graphics program written in the proposed draft form of standard BASIC.

100 ! Town
110 !
120 ! Draws a picture of a town
130 !
140 1 Naming the type of plotter is implementation-defined
150 !
160 Window 0, 4, 0, 3
170 !
180 Plot Town
190 !
200 End
210 !
220 Picture Town
230 !
240 For i = 1 to 2
250 For J = 1 to 3
260 Plot House with scale(.5) * shift(i,j)
270 Next j
280 Next i
290 !
300 End picture
310 !
320 Picture House
330 !
340 Plot 0,0; 0,1; 1,1; .5,1.5; 0,1; 0,0
350 !
360 End picture

The points to be plotted are given 
in user coordinates, which are spe­
cified with a WINDOW statement. 
The programmer may specify the 
physical size of the screen to be used, 
arrange to CLIP the picture, SET the 
color and line style, and use the ASK 
statement to find out about the cur­
rent status of these quantities. The 
GRAPHIC INPUT and GRAPHIC 
PRINT statements provide text input 
and output. Polygon fill can be ac­
complished by:

MAT FILL POLYGON

Complicated pictures may be built 
from simple ones with PICs, which 
are like subprograms. They are in­
voked with the PLOT statement 
(rather than with the CALL state­
ment). As they are plotted, transfor­
mations of various types may be 
made. These include SHIFT, SCALE, 
ROTATE, and SHEAR, and com­
binations thereof.

Listing 2 is a complete program for 
drawing a picture of a town.

Real Time
Most BASIC users would be sur­

prised to learn that BASIC is one of 
the important languages for real-time 
applications, such as industrial-pro- 
cess control. The reason is that it is 
simple and can be provided easily on 
the small machines used in such ap­
plications. Standard BASIC will in­
clude optional features, such as 
parallel sections and definitions of 
device interfaces, to permit this use. 
This work grew out of earlier work 
sponsored by the IEEE in developing 
a standard for CAMAC (Computer 
Automated Measurement and Con­
trol) BASIC.

A real-time program consists of 
parallel sections, each of which is an 
independent program unit with 
respect to line numbers and iden­
tifiers. Each parallel section can 
receive input from and send output to 
any device specified and can ex­
change messages with other parallel 
sections. A section can become dor-

212 June 1982 © BYTE Publications Inc



mant upon reaching a WAIT state­
ment and be awakened when some 
specified event or condition has oc­
curred. Within a parallel section, all 
the usual BASIC statements may be 
used, including subprograms. Of 
course, there must be a supervisor 
program behind the scenes that at­
tends to all message passing and 
scheduling.

As with BASIC in general, an ex­
ample program that illustrates all of 
the features of real-time BASIC 
would be prohibitively long. Just a

hint can be gotten from this simple 
example:

320 PARACT RIG1
330 WAIT TIME 17*60*60
340 PRINT "Time to go home."
350 END PARACT

This parallel section will "hang" until 
61,200 seconds have passed since 
midnight; it will then "wake up," 
print the message, and then loop back 
to the WAIT statement until 5 p.m. 
the next day.

Fixed Decimal
An optional fixed-decimal module 

allows programmers to specify that 
all numeric variables and expressions 
be fixed decimal. Of use to data-pro- 
cessing programs, it can be invoked 
by an option statement. For instance;

OPTION ARITHMETIC FIXED*8.2 

specifies that fixed-decimal arithmetic 
is to be used and that all variables (ex­
cept those declared otherwise) must 
permit eight digits before the decimal 
point and two digits after.

Individual variables may be de­
clared to have precisions other than 
those prescribed in the OPTION 
ARITHMETIC statement by using 
the DECLARE statement. For in­
stance:

DECLARE NUMERIC
national__ debt*15.2

would allow values up to a penny less 
than 1 quadrillion dollars.

Editing
Although legally not part of the 

standard, an optional module will 
suggest forms to be used for the 
editing operations often associated 
with BASIC programs. These include 
LIST, EXTRACT, DELETE, and 
RENUMBER.

Summary
For several years now, BASIC has 

been the de facto standard-pro­
gramming language for small com­
puters (and in Europe, for business 
computers as well). Finally, the de 
facto standard is about to become 
standardized. Far from holding back 
innovation, the proposed draft stan­
dard will be a major force in keeping 
software up to pace with hardware 
advances in the eighties.

References
1. American National Standard for the Pro­

gramming Language Minimal BASIC, 
X3.60-1978. ANSI, NewYork, 1978.

2. Kurtz, Thomas E., “Basic," from History 
of Programming Languages. Academic 
Press, 1981, pp. 515-549.

218 June 1982 © BYTE Publications Inc



Timetable for Approval

This article is the first public presen­
tation of the main features of the stan­
dard now in preparation. The X3J2 
committee will shortly send its pro­
posed standard to the parent commit­
tee X3. X3 will then establish a public­
comment period during which copies 
of the proposed standard will be avail­
able. The public is then invited to ex­
amine thestandard, pointoutflaws, or 
propose modifications. Individual 
computer users and usergroups should 
be on the lookout for the public-com­
ment period and respond with sugges­
tions or comments.

We also hope that the trade and 
academic press will examine the stan­
dard when it becomes available and 
draw comparisons between it and 
other popular versions of BASIC. The 
X3J2 committee doesn't really expect 
all vendors to implement all that is in 
the standard. But we hope that what 
vendors do implement will be compati­
ble with the standard.

The schedule of events in the near 
future for the standard is:

Late July 1982: Confirm the technical 
review, possibly make last-minute 
changes.
Fall 1982: Transmit the standard to X3 
for further processing. At this point, 
the standard will be virtually stable, 
and vendors and users can begin to 
count on its features. Subsequent pro­
cessing of the standard is largely for­
mal, although it is possible to change 
the standard when there is a significant 
public aversion to some feature in the 
standard.
Late 1982 or early 1983: Public com­
ment period and letter ballot within 
X3.
1983: Transmittal to ANSI for still fur­
ther processing.
1983: Final approval by ANSI.

As with any best-laid plans, unfore­
seen problems can only cause delays. 
The above schedule is therefore op­
timistic. On the other hand, the tech­
nical content of the standard is not 
likely to change after the fall of 1982. 
Implementers should be able to plan 
new compilers and interpreters with 
confidence at that time.

188 June 1982 © BYTE Publications Inc



How Standards Are Written
One characteristic of standards 

work is that major points are usually 
settled easily, while seemingly minor 
points may take years to resolve. A 
classic example is the "option base con­
troversy" in the X3]2 committee.

Most early versions of BASIC al­
lowed default dimensioning of arrays. 
That is, in the absence of a DIM state­
ment, the subscripts ofan array (list or 
table) could range up to a value of 10. 
But BASICs differed in what they 
allowed for the lower bound. Some 
specified the lower bound to be 0, 
while others specified it to be 1. The 
argument for 0 is that many elemen­
tary applications need the subscript 0, 
and it should be available for those 
cases. The argument for 1 is that most 
arrays naturally begin with 1, and it 
would be a waste of storage to allow 0 
when it isn't needed. The committee 
argued long and hard over this one. 
Each time we voted, we tied. The OP­
TION BASE compromise eventually 
emerged. The rule is this: if OPTION 
BASE 0 appears in the program, the 
lower bound for all subscripts is 0; if 
OPTION BASE 1 appears, the lower 
bound is 1; if neither appears, then by 
default the lower bound is 0.

Few members of X3]2 really liked 
this compromise, but the committee 
supported it in the interests of getting 
out the standard for Minimal BASIC. 
Subsequent efforts to remove this fea­
ture failed, for the same reason.

In a radical shift, the committee 
decided, five years later, to allow users 
to specify lower bounds for individual 
arrays in dimension statements. Thus, 
"DIM YEAR(1970:1980)" would create 
a list named "YEAR" having 11 
elements identified with the numbers 
1970, 1971. . .1980. Ifno lowerbound 
is specified, it is assumed to be 1. Both 
sides now have their wish, but it took 
more than five years to achieve it.

Logistics
Meetings of standards committees 

are held near where the members 
work, and members take tums hosting 
meetings. Since 1974, X3J2 has met30 
times. Ten of these meetings have been 
in the East, nine in the Midwest and 
South, and eight in the Far West. 
Because we are developing the stan­
dard jointly with ECMA (European 
Computer Manufacturers Association) 
TC21, we hold joint meetings yearly, 
alternating between the United States 
and Europe. Three of these meetings 
have been held in Europe.

Rotating meeting sites is required. 
Often we have to choose between 
alternate sites based on, for example, 
availability and cost of accommoda­
tions. But one factor we always con­
sider very carefully is food. Whatever 
site we choose must have good restaur­
ants. Thus we're fortunate that 20 per­

cent of the X3]2 membership works in 
the San Francisco area. In Europe, the 
ECMA TC21 members work in ornear 
London, Paris, and Venice. I don't 
know what we would have done had 
computer companies located them­
selves in remote areas that offered no 
culinary delights.

By and large, the membership of 
X3J2 has been stable. Representatives 
from large companies sometimes 
change, and some members change 
employers. But, for the most part, the 
members have known each other and 
worked together for years. This leads 
to occasional amusing incidents.

In the early days of the committee, 
before individualized T-shirts became 
the fad, one memberstood up to speak 
but instead doffed his shirt to reveal his 
custom T-shirt that had the words 
"BASIC Standard" on the front and 
"Strings Subco" on the back. We now 
take our special T-shirts for granted, 
but that one brought down the house.

Another member was amused to dis­
cover a brand of toilet paper called 
"Basic"; he presented this as an exhibit 
to illustrate the then-current status of 
the standard.

More recently, a member of long 
standing appeared at a meeting carry­
ing a large plastic goose. When the dis­
cussion deteriorated (who can be bril­
liant for six hours a day all week 
long?), the goose would appear on the 
table.

214 June 1982 © BYTE Publications Inc


